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Preface

During the last two decades the science of nonlinear and chaotic dynamics has
had a spectacular development. Many important ideas and tools appeared in
the literature, helping to give a deeper understanding of the role of order and
chaos in dynamical systems. One of the most fruitful applications of these ideas
and tools has been in the field of dynamical astronomy, namely in galactic dy-
namics and in the dynamics of the solar system. On the other hand recent
observational studies of galaxies and of exosolar systems have come to the point
of detecting order and chaos in these systems. For this reason the members of
the Research Center of Astronomy of the Academy of Athens decided to orga-
nize an international workshop on this subject. This workshop “Galaxies and
Chaos. Theory and Observations” was held in Athens in September 16-19, 2002,
(see http://www.cc.uoa.gr/gc2002/). A total number of 77 participants from 21
countries from all over the World attended the workshop, namely from Europe,
U.S.A, Australia, Japan and Chile. There were 45 talks (23 of them invited talks)
and 10 posters. The workshop brought together the experience of people working
on galactic dynamics and galaxy formation (theory and observations) with the
experience of people working on nonlinear dynamical systems. The talks summa-
rized the most recent developments in both theoretical and observational aspects
of galactic dynamics with emphasis on the role of chaos in galaxies. Studies of
chaos in galaxies use methods similar to those frequently used in celestial me-
chanics, or other branches of physics and astronomy. For this reason we invited
some speakers from related fields of research. A few interesting papers on some of
the most up-to-date problems of celestial mechanics are included in this volume.

The Scientific Organizing Committee was composed of: G. Contopoulos (chair-
man, Academy of Athens), E. Athanassoula (Observatoire de Marseille, France),
A. Bosma (Observatoire de Marseille, France), H. Dejonghe (University of Ghent,
Belgium), A. Fridman (Russian Academy of Sciences), P. Grosbøl (ESO, Ger-
many), P.O. Lindblad (Stockholm Observatory, Sweden), D. Lynden-Bell (Uni-
versity of Cambridge, UK), D. Merritt (Rutgers University, USA), and N. Voglis
(Academy of Athens). The Local Organizing Committee was composed of: N.
Voglis (chairman), H. Dara, Ch. Efthymiopoulos, P. Patsis, V. Tritakis and M.
Zoulias.

The Academy of Athens covered a considerable part of the expenses of the
workshop. But we are grateful also to several other institutions and persons,
namely: The University of Athens, in particular the vice-rector Dr. G. Der-
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mitzakis, that provided both financial and substructure support, the Hellenic
Ministry of Culture, the A.G. Leventis Foundation, the City of Athens, Siemens
S.A. in Athens, the European Physical Society and private donors. With their
help we could in particular organize an archeological tour of Athens, a closing
dinner at the terrace of a hotel in the center of the city, and provide free hotel
rooms and free lunches to many participants. We thank heartily all of them.

The Editors
G. Contopoulos, N. Voglis
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Part IV Formation and Evolution of Galaxies

Angular Momentum Redistribution
and the Evolution and Morphology of Bars
Lia Athanassoula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Major Mergers and the Origin of Elliptical Galaxies
Andreas Burkert, Thorsten Naab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Dynamical Evolution of Galaxies:
Supercomputer N-Body Simulations
Edward Liverts, Evgeny Griv, Michael Gedalin, David Eichler . . . . . . . . . . . 340

Formation of the Halo Stellar Population
in Spiral and Elliptical Galaxies
Tetyana Nykytyuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Model of Ejection of Matter from Dense Stellar Cluster
and Chaotic Motion of Gravitating Shells
Maxim V. Barkov, Vladimir A. Belinski, Genadii S. Bisnovatyi-Kogan,
Anatoly I. Neishtadt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Direct vs Merger Mechanism Forming Counterrotating Galaxies
Maria Harsoula, Nikos Voglis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Pitch Angle of Spiral Galaxies
as Viewed from Global Instabilities of Flat Stellar Disks
Shunsuke Hozumi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380



X Contents

Collisionless Evaporation from Cluster Elliptical Galaxies
Veruska Muccione, Luca Ciotti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Part V Solar System Dynamics

Chaos in Solar System Dynamics
Rudolf Dvorak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Dynamics of Extrasolar Planetary Systems:
2/1 Resonant Motion
John D. Hadjidemetriou, Dionyssia Psychoyos . . . . . . . . . . . . . . . . . . . . . . . . . 412

The “Third” Integral
in the Restricted Three-Body Problem Revisited
Harry Varvoglis, Kleomenis Tsiganis, John D. Hadjidemetriou . . . . . . . . . . . 433



List of Contributors

Athanassoula Lia
Observatoire de Marseille,
France
lia@obmara.cnrs-mrs.fr

Bacon Roland
Centre de Recherche Astronomique de
Lyon,
France
bacon@obs.univ-lyon1.fr

Barkov Maxim
Space Research Institute,
Russia
barmv@sai.msu.ru

Barot J.M.
Westminster School,
U.K.
jaideep.barot@westminster.org.uk

Belinski Vladimir A.
National Institute of Nuclearphysics
(INFN) and International Center of
Relativistic
Astrophysics (ICRA),
Italy
volodia@vxrmg9.icra.it

Bergamin Jeroen
University of Patras,
Greece
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Order and Chaos in Astronomy

George Contopoulos

Research Center of Astronomy, Academy of Athens, 14, Anagnostopoulou St.,
Athens, GR-10673, Greece

Abstract. We review the applications of order and chaos in various branches of as-
tronomy. Order and chaos appear in generic dynamical systems, including the sun and
other stars, the solar system and galaxies, up to the whole Universe. We discuss in
particular the various types of orbits in galaxies, emphasizing the role of diffusion of
chaotic orbits and the escapes to infinity. Then we consider chaos in dissipative systems,
like gas in a galaxy, chaos in relativity and cosmology, and chaos in stellar pulsations
and in the solar activity.

1 Introduction

The study of order and chaos had an explosive development in recent years.
Thousands of papers were published on this subject. Particular problems of
interest for Astronomy have been studied in various fields. Such fields are:

1. Celestial Mechanics
2. Galactic Dynamics
3. Relativity
4. Cosmology
5. Stellar Pulsations
6. Solar Activity

In the present review we will discuss several problems from these fields.
A special book by G. Contopoulos on “Order and Chaos in Dynamical As-

tronomy” (Springer Verlag, 2002) [20] has just appeared. This book of 624 pages
and 305 figures has about 1200 selected references for further reading on this
subject.

2 Celestial Mechanics

There are two very different traditions in Dynamical Astronomy. One deals
mainly with regular phenomena (periodic and quasi-periodic motions) and the
other with irregular phenomena (chaotic motions).

The basic example of order was provided by celestial mechanics. Strictly
speaking only in integrable systems all motions are regular. But the systems
considered in celestial mechanics are assumed to be close to integrable, and
most motions are close to quasi-periodic. Thus the solar system was considered
for a long time a paradigm of order.

G. Contopoulos and N. Voglis (Eds.): LNP 626, pp. 3–29, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



4 George Contopoulos

Only in recent years chaos has been found in the solar system. The first
chaotic phenomena referred to the irregular rotation of some satellites and to
the distribution of the asteroids ([81], [48], [82], [46], [40], [65]). On the other
hand the motions of the planets seem to be stable over several billions of years.
But chaos is present in the motions of the planets also. The time scale for chaos
(the so-called Lyapunov time) is relatively short in the case of Pluto (some 107

years). Nevertheless Pluto does not escape from the solar system, because of
some resonance effects. Thus Pluto is an example of “stable chaos”.

A similar phenomenon of “stable chaos” appears also in the case of certain
asteroids that fill some resonances (and do not form gaps there), despite their
short Lyapunov time [63]. A new explanation of this phenomenon will be given
by H. Varvoglis during this workshop.

Another planet with Lyapunov time shorter than a Hubble time is Mercury.
According to Laskar [55] Mercury’s orbit should approach eccentricity 1 after
about 3.5 billion years, therefore Mercury should either plunge into the sun, or
collide with Venus. However, R. Dvorak, will present numerical evidence in this
workshop that Mercury will be stable for several Hubble times.

There are two more phenomena that affect our Earth, and deal with order and
chaos. One is the origin of the meteorites that hit the Earth. These meteorites
and the dust of the zodiacal light come from very different parts of the solar
system, and their orbits are in general chaotic [34].

The other phenomenon deals with the obliquity of the Earth’s axis, which
is stabilized by the action of the Moon [54]. Without the Moon the Earth’s
orientation would change completely, in a chaotic way, and this should affect
considerably the evolution of life. However, with the Moon in its present position
the chaotic variation of the Earth’s obliquity does not exceed certain limits, and
the corresponding climatic changes are also limited.

3 Classification of Chaotic Systems

Chaotic behaviour is a general characteristic of nonintegrable dynamical sys-
tems. There are various degrees of chaos that are classified in classical books of
statistical mechanics on regular and chaotic motion (e.g. [58]). Namely nonin-
tegrable systems are considered to be ergodic, mixing, Kolmogorov, or Anosov
(each class is a subclass of the previous class). They are ergodic if most mo-
tions go everywhere in the available phase space, mixing if two nearby particles
deviate considerably, Kolmogorov if this deviation is exponential in time, and
Anosov if the average exponential factor (the so-called Lyapunov characteristic
number) is always larger than a nonzero number. In random systems we have
the limit of an infinite Lyapunov characteristic number.

However, this classification is now obsolete. In fact ergodic systems (and mix-
ing, Kolmogorov and Anosov systems) appear only rarely, and generic dynamical
systems contain both order and chaos. Namely the set of ordered motions is not
zero in general, and this is the opposite of what happens in ergodic systems. This
conclusion is based on the famous KAM theorem ([53], [1], [67]), that proves
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Fig. 1. Old and New Classification of Dynamical Systems.

the existence of a finite set of quasi-periodic motions in generic dynamical sys-
tems. Thus the presently accepted classification of dynamical systems is shown
in Fig. 1.

We call chaotic systems those having chaotic domains, but possibly also or-
dered domains. In limiting cases we have only chaotic (ergodic) motions.

A system is close to integrable if its chaotic domains are small and it is close
to ergodic if its ordered domains are small. The random systems are extremely
chaotic. Their Lyapunov time is zero. As regards the noncompact systems (i.e.
systems with escapes) they may be integrable or nonintegrable. In the latter case
we have the phenomenon of “chaotic scattering”.

A general theorem that has been proved recently in the case of some simple
maps, namely the logistic map [51] and the standard map [36] is the following.
If the perturbation parameter K is large there are many values of K for which
there are no stable periodic orbits and the system is completely chaotic (i.e. the
ordered orbits have a measure zero). Nevertheless there is no interval ∆K of
values of K without any islands of stability. This theorem seems to be applicable
in generic dynamical systems.

Examples of Hamiltonian systems with such a behaviour have been found in
recent years [25] and [44]. These systems have a central periodic orbit which is
alternatively stable and unstable, up to arbitrarily large values of the perturba-
tion.

A classical case where we have both order and chaos is the standard map

x′ = x + y′

(mod1) (1)

y′ = y +
K

2π
sin(2x)
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For small K (Fig. 2a) this system is mostly ordered, with only a little chaos
near the unstable periodic orbit (0,0) and the asymptotic curves emanating from
it.

As K increases chaos increases also (Figs. 2b,c,d,e) and for K=8 it seems that
chaos is complete.

Fig. 2. Phase portraits of the standard map for various values of the nonlinearity
parameter K: (a)K=0.5, (b)K=l, (c)K=3, (d)K=5, (e)K=8.
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Fig. 3. The area of the islands of stability in the standard map as a function of K [with
unit the square (0,l)x(0,l)].

Nevertheless small islands of order have been found for larger values of K
in a recurrent way (Fig. 3). Namely islands appear in particular regions of the
phase space whenever K increases by 2π [37].

Therefore chaos is never complete, despite a widespread opinion that beyond
a limiting perturbation the system should remain completely chaotic.

4 Galactic Dynamics

Order and chaos play an important role in galactic dynamics. The appearance
of order in galactic dynamics is based on the “third integral” of motion [14].

One of the first applications of the third integral was in the velocity ellipsoid
of stars near the sun. If there are only two integrals of motion, the energy

E =
1
2
(R2 + Z2 + Θ2) + V (2)

and the angular momentum
J = rΘ (3)

one should have a distribution function of the form

f = f(E, J) (4)

In particular an ellipsoidal distribution should be of the form

f = f(R2 + Z2 + k(Θ − Θ0)2 (5)

with the two equal axes along R and Z. However, the observations had shown
definitely that the Z axis is much shorter than R. This indicated the existence
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of a third integral of motion
I = Z2 + . . . (6)

that should be included in the distribution function f for the velocity [5], so that
the distribution function should become

f = f(R2 + (1 + k′)Z2 + k(Θ − Θ0)2) (7)

My involvement in the subject of the third integral in galaxies started during
my first visit to Stockholm in 1956. I worked with Professor Bertil Lindblad on a
generalization of the epicylic theory of planar galactic orbits. But when I tried to
extend the theory to three dimensions I could not do very much analytically. At
that time Per Olof Lindblad was calculating planar orbits in galaxies to explain
the spiral arms. His first calculations were presented at an IAU Symposium in
1956 [59] At my request he calculated for me two orbits in three dimensions. The
surprising thing was that these orbits (Fig. 4) were not ergodic, as I expected, but
indicated the existence of a third integral of motion in generic dynamical systems
([13],[14]). I realized later that Whittaker [80] had already found a third integral
(that he called adelphic integral) in particular cases by a different method.

Fig. 4. The first calculated orbits in the meridian plane of an axisymmetric galaxy
(1956) are like deformed Lissajous figures.
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It is remarkable that Birkhoff [7] had also found a similar integral by another
different method, but he never believed in its usefulness. In fact the third integral
is in general not exact, but only a formal series. According to Birkhoff this
indicated that such an integral would be applicable only over limited times. In
particular he believed that a linearly stable periodic orbit in a system of two
degrees of freedom would be stable for all times only in integrable systems.

It was only through the KAM theorem that the complete stability of linear
stable orbits was established for generic two-dimensional dynamical systems.
But even after the KAM theorem was established, it was not clear what was the
usefulness of such a formal integral.

I remember that when I first spoke to Moser about the third integral in galac-
tic dynamics he was doubtful of its usefulness, as it is only an asymptotic series
that does not converge. But at that time I could calculate by computer algebra
([21], [16]) the higher order terms of the third integral (this was done by simple
Fortran, without the present packages of computer algebra, like mathematica
etc). The results were remarkable, indicating an excellent agreement between
theoretical and numerical orbits when higher order terms of the third integral
were calculated. This impressed Moser and he remarked in one of his papers
([68]) that because of this work in galactic dynamics the subject of the third
integral “received renewed interest”.

At the same time a student of Arnold, Nekhoroshev, studied the usefulness
of truncated third integrals. He found the best truncation, and he showed the
applicability of these integrals over exponentially long times, a result that is the
central element of the Nekhoroshev [69] theory.

In some cases one has to reach very high orders of truncation of the third
integral in order to find the Nekhoroshev limit and deviations beyond it.

Another independent development started with the Fermi-Pasta-Ulam paper
[39] on coupled oscillators that revealed the existence of ordered orbits in systems
of many degrees of freedom. This result was also explained, later, by means of
formal integrals of motion, of the third integral type.

5 Chaotic Orbits in Galaxies

A recent example refers to an application of the third integral to self-consistent
models of galaxies, generated by N-body simulations [28]

Up to now in most applications the potential of the galaxy was assumed to be
given by a simple analytic formula. Then a third integral could be constructed
in order to find the structure of the regular orbits. But in our present studies we
start with models produced by the collapse of a protogalaxy. This gives not only
the density and the potential of the final model, after the collapse, but also the
distribution of the velocities. This method is very different from other methods,
like the Schwarzschild (1979) method, that try to construct self-consistent models
by populating various initial conditions of orbits in an appropriate way.

The success of the original Schwarzschild method, indicated that most or-
bits are regular, i.e. his self-consistent models were very close to integrable. At
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the same time several integrable models, the so-called Stäckel models, were in-
troduced in galactic dynamics ([35], [8], [78], [50], etc). In particular, several
self-consistent models were constructed. This led to the conjecture that chaos is
unimportant in galactic dynamics. It was stated loosely that somehow, Nature
avoids chaos in galaxies and forms only integrable models.

However, our studies of models generated by N-body simulations indicate
that in many cases both ordered and chaotic orbits are present. There are three
main types of orbits in a galaxy, box orbits (Fig. 5a), tube orbits (Fig. 5b) and
chaotic orbits (Fig. 5c). Box orbits appear in nonrotating systems (e.g. elliptical
galaxies). Tube orbits appear near various resonances (see also Figs. 6a,b,c).
Chaotic orbits are due to an interaction of resonances. E.g. in Fig. 7 a chaotic
orbit joins the bar region of a galaxy with the outer near circular orbits. Chaos
is small in some cases, but not negligible. On the other hand no model was found
that is completely chaotic.

The general conclusion is that Nature does not form integrable models like
those derived from Stäckel potentials, nor ergodic systems, like those used in
statistical mechanics, except in an approximate way.

There are three types of chaotic orbits in galaxies:

Fig. 5. Typical orbits in a self-consistent galactic model: (a)box, (b)tube, (c)chaotic.
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Fig. 6. Three further types of tube orbits.

Fig. 7. A chaotic orbit in a barred galaxy.

1. Orbits near corotation in rotating spiral, or barred galaxies [17]. Such orbits
are important in terminating the bars close to corotation.

2. Elongated orbits passing near the center of a galaxy ([61], [43], [62]). Such
orbits are particularly important when there is a strong mass concentration
near the center, e.g. a black hole. A large black hole in a nonspherical galaxy
tends to change the character of the orbits, from boxes filling curvilinear
parallelograms far the center, to almost Keplerian orbits near the center.
The mixing of two types of orbital behaviour along the same orbit produces
chaos. One can even estimate the size of a black hole by the degree of chaos
produced around it.
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Fig. 8. (a) Ordered and chaotic orbits on a surface of section in a self-consistent galactic
model. (b) The density in the chaotic domain (R=0.6) is roughly constant.

3. A third chaotic region is the region between the box orbits, that cover a
large inner part of a galaxy (except the very central region) and the tube
orbits that refer mainly to orbits circulating around the main galaxy in the
outer parts (Fig. 8). We notice that chaotic orbit produce a constant density
in the chaotic domain.

6 Diffusion of Galactic Orbits

When an integrable system is slightly perturbed it develops a small degree of
chaos. This is introduced as follows. In an integrable case the Poincaré surface of
section is filled with invariant curves. We may consider a general case in which the
invariant curves close around a central invariant point O. The rotation number
along successive invariant curves varies smoothly. For every rational rotation
number n/m all the orbits starting on the corresponding invariant curve are
periodic, of period m (Figs. 9a,b). When a generic perturbation of order ε is
introduced, only two periodic orbits of period m are left, one stable and one
unstable (Fig. 9c). (In some cases there are more pairs of stable-unstable orbits).
The stable orbits are surrounded by islands, while near the unstable points some
chaos appears.

As the perturbation increases the islands increase in size. The chaotic regions
also increase in size forming zones of instability. However between the main zones
of instability there are still invariant curves, around the center,and the various
chaotic regions are separated.

When the perturbation ε goes beyond a critical value εcrit the various chaotic
regions communicate (Fig. 9c) and chaos becomes important abruptly. This is
the phenomenon of “resonance overlap” ([16], [74], [84], [11]). This leads to a
diffusion of the orbits that is called “resonance overlap diffusion”. This is the
main mechanism that introduces a large degree of chaos.
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Fig. 9. Invariant curves on a surface of section of two resonant integrable cases and
one nonintegrable case. (a) Case with three islands, (b) Case with two islands. (c) A
case with both double and triple islands. For small perturbations the chaotic domains
near the unstable double and triple orbits are separated by KAM curves. But for
larger perturbations the last KAM curve is destroyed and large chaos, due to resonance
overlap, is produced.

In three or more degrees of freedom there is one more mechanism that in-
troduces chaos, namely Arnold diffusion [3]. In fact, while in systems of two
degrees of freedom the KAM surfaces are two-dimensional and separate the in-
terior from the exterior in the 3-D phase space, in three degrees of freedom the
KAM surfaces are three-dimensional and do not separate the phase space, which
is now five-dimensional. Thus the various chaotic regions always overlap, even
for arbitrarily small perturbation ε.

However the time scale of Arnold diffusion is very large, of order

T ∝ exp(
1
ε
) (8)
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i.e. it is exponentially long ([3], [69], [11]). In the close neighbourhood of invariant
tori the time scale is even superexponential, of the form

T ∝ exp(exp(
1
ε
)) (9)

or even longer [66]. In galactic problems this time is much longer than the age of
the Universe, therefore Arnold diffusion is not important. Only in plasma physics
this diffusion may have observable consequences.

Although Arnold diffusion is also due to resonance overlap, nevertheless we
distinguish clearly the resonance overlap diffusion from Arnold diffusion ([54],
[22]) even in systems of three or more degrees of freedom. In fact, Arnold diffusion
appears only very close to the resonance lines of the Arnold web (Fig. 10) while
resonance overlap extends over large regions of the phase space.

Fig. 10. The Arnold web contains the resonant lines between the frequencies ν1 and
ν2. If the perturbation is small there is a slow Arnold diffusion from A to B along the
thick lines. But if the perturbation is large the resonant lines become very thick and
allow resonance overlap diffusion, directly from A to B.



Order and Chaos in Astronomy 15

A numerical example was given in the case of two coupled standard maps
[22]

x1
′ = x1 + y1

′ , y1
′ = y1 +

K

2π
sin2πx1 − β

π
sin2π(x2 − x1 )

( mod1) (10)

x2
′ = x2 + y2

′ , y2
′ = y2 +

K

2π
sin2πx2 − β

π
sin2π(x1 − x2 )

where K is the nonlinearity and β the coupling parameter.
The diffusion time T is given empirically by the formula

T = exp[a − b(β − βcrit)] (11)

where K=3, a=4.14, b=4160, and βcrit = 0.305124 is a critical value of the
coupling parameter (Fig. 10).

For β > βcrit the diffusion time decreases with β according to the exponential
law (11) (Fig. 11) and becomes very small for relatively large β. However, for
(β < βcrit the time T increases superexponentially as β decreases and for β <
0.305 it becomes larger than T=1010 iterations, i.e. it is very difficult to calculate
numerically.

In systems of two degrees of freedom there is also a slow diffusion, like Arnold
diffusion, when the orbits have to cross the holes of cantori, surrounding islands
of stability.

Cantori appear near the outermost invariant curve surrounding a stable in-
variant point, when the perturbation K increases beyond a critical value Kcrit.
Then the outermost invariant curve is destroyed and it becomes a cantorus with

Fig. 11. The diffusion time T as a function of the coupling parameter β increases
exponentially for decreasing β, if β > 0.305124, and superexponentially for smaller β.
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Fig. 12. An island of stability in the standard map inside the large chaotic sea is limited
by the last KAM curve, (a) For K=4.79 the last KAM curve surrounds 5 islands of
stability, (b) for K=4.80 the last KAM curve is inside these islands.

infinite holes. Chaotic orbits close to this cantorus can cross it from inside out-
wards, or from outside inwards. Thus we see two different chaotic domains out-
side the main island of stability. A “sticky zone” between the island and the
cantorus and a “large chaotic sea” outside the cantorus (Fig. 12). When K goes
beyond Kcrit the size of the island decreases abruptly and a sticky zone is formed
between the cantorus and the new outermost limit of the island. The diffusion
time increases exponentially as we deviate from the cantorus inwards and ap-
proach the new boundary of the island.

On the other hand if the perturbation increases, the holes of the cantorus
become larger and the diffusion time becomes abruptly much shorter.

As an example we consider the cantori around an important island in the
standard map (see (1)) for K=5 and K=4.998. In the first case we found orbits
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that escape to the chaotic sea through the cantorus in a time T=2, while in the
second case this time increases to T=2xl05 [28].

Despite these variations the stickiness effect plays a role in practical applica-
tions. For example in galactic dynamics some orbits stay close to the boundary
of a resonant island for a long time, and can be considered as regular during the
life-time of the galaxy, although in the long run they may become very chaotic
and may even escape from the system.

7 Escapes

Another interesting subject related to chaos, deals with escapes. If the energy h
of a star in a galaxy is larger than the escape energy hesc, the star may escape
to infinity. However, there are many stars, with energy larger than hesc, which
do not escape, because they are trapped around a stable periodic orbit.

One way to study the problem of escapes is by using a simple model. An
example is given by the Hamiltonian

H =
1
2
(ẋ2 + ẏ2 + Ax2 + By2) − εxy2 = h (12)

(A=1.6, B=0.9, ε = 0.08 and various values of the energy h). The escape
energy in this case is hesc=25.31.

If his larger than hesc the CZV has two openings (Fig. 13). At the openings,
there are two unstable periodic orbits, that are called Lyapunov orbits. Any
particle crossing a Lyapunov orbit outwards escapes from the system and never
returns to it.

For an energy slightly smaller than the escape energy most initial conditions
generate chaotic orbits. Most of these orbits escape when the energy increases
slightly above the escape energy. However, the escape may take a long time.
There are sets of orbits that escape rather fast, after one or two iterations, but
there are also orbits that escape only after many iterations. The domains of
escape are limited by orbits that are asymptotic to one or the other Lyapunov
orbits.

In Fig. 15 we show the escape domains for orbits escaping after one or two
iterations in the forward time direction from the upper opening only.

By counting the escaping particles out of a large number of bodies we found
empirically the escape rate and the number of remaining particles N out of an
initial number N0 [24]

N = N0e
−pt (13)

If the energy is larger than a critical value hcrit, much larger than escape energy
hesc, practically all particles escape according to the law (13) and the escape
rate p is proportional to a power of (h-hcrit),

p ∝ (h − hcrit)2 (14)

where a=0.5, practically the same for several potentials. Thus the exponent a
may be a universal number [52].
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Fig. 13. Equipotentials in the Hamiltonian (12). These are open if the energy is larger
than the energy of escape. At the openings, there are two unstable periodic orbits, O1

and O2, called Lyapunov orbits.

If the energy is larger than hesc, but smaller than hcrit, there is a set of
particles Nnon, that never escape. Then the escape law is of the form

N − Nnon = (N0 − Nnon)e−pt (15)

The transition at hcrit is like a phase transition and it is connected with the size
of the islands of stability. For h < hcrit there are important islands of stability,
while for h > hcrit the size of the islands becomes very small, and most islands
disappear altogether.

The fact that some particles escape from the system has as a consequence
the nonconservation of areas on a surface of section (Fig. 14). Namely, while
for h < hesc the plane y=0 is a Poincaré surface of section and the areas are
conserved, for h > hesc this surface is no more a Poincaré surface of section and
the areas are reduced.

Thus for h > hesc the 2-D map on the surface y=0 looks like a dissipative
system although in the full 3-D space the volumes are preserved. Furthermore,
although conservative systems do not have attractors, nevertheless in systems
with escapes the infinity acts as an attractor. And if there are more than one
openings of the curves of zero velocity we may speak of a corresponding number
of co-existing attractors.

8 Dissipative Systems

The main difference between dissipative systems and conservative systems is the
existence of attractors at a finite distance.
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Fig. 14. A (non Poincaré) surface of section for the Hamiltonian (12) and an energy
larger than the escape energy. The orbits starting in the domains E(O1,n) escape
through the Lyapunov orbit O1 after n further crossings with the surface of section.
Near the boundary there are invariant curves of nonescaping orbits.

Fig. 15. A Lorentz strange attractor.
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In general, dissipative systems have three types of attractors (1) Point attrac-
tors, (2) Limit cycles (in two dimensional flows) and (3) strange attractors. In
more dimensions we may have limiting structures of higher than one dimension.

We have two types of dissipative systems (1) those given by nonlinear differ-
ential equation, and (2) those given by nonlinear maps.

A simple dissipative system of differential equations is the Lorentz system
[60]

dx/dt = σ(y − x)
dy/dt = ρx − y − xz (16)
dz/dt = −βz + xy

(where σ, ρ, β > 0).
A most simple dissipative map is the Hénon map [47]

x′ = y − Kx2 + 1 , y′ = bx (17)

with 0 < b < l.
These systems were the first to provide strange attractors (Fig. 15).
In dissipative cases the volume, or surface, in phase space is shrinking. The

Lyapunov characteristic number is negative in the cases of point attractors or
limit cycles, but it is positive in the case of strange ’attractor. Namely, the
moving points approach the attractor, but nearby points on the attractor deviate
exponentially. The Hénon map (17) has a limiting conservative case for b=l. In
this case no attractor appears.

There are some classical books on chaos in dissipative systems, like the books
of Lichtenberg and Lieberman [58] and Guckenheimer and Holmes [45].

In galaxies the gas is a dissipative system. Thus, we have a secular evolution
of the gas that is different from the behaviour of the stars. In particular we
may have an attractor at the center of the galaxy, or a limit cycle in the case
of a stationary flow of gas. A special case is the appearance of vortices near
corotation (Fig. 16) in spiral and barred galaxies ([38], [41], [42]), a subject that
will be discussed by Fridman during this workshop.

9 Chaos in Relativity and Cosmology

Much work has been done on this subject in recent year. An example of this
activity is the volume on “Deterministic Chaos in General Relativity” edited by
Hobill et al. [49]. A more recent review was provided by Contopoulos et al. [27].

One of the first cases where chaos was found in General Relativity was the
case of two fixed black holes ([18], [19]). It is remarkable that the relativistic
problem is chaotic, while the corresponding classical problem of two fixed centers
is completely integrable. In particular the relativistic motions of photons are
completely chaotic, but the phase space extends to infinity. On the other hand
the motions of particles with nonzero rest mass are in part ordered and in part
chaotic.
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Fig. 16. The flow of gas in a barred galaxy. In the corotation region there are two
cyclones along the bar and two anticyclones perpendicularly to the bar.

Fig. 17. Chaos in the case of two fixed black holes. Orbits of photons coming from
infinity fall into the black hole M1 (orbits of type I), or M2 (orbits of type II), or escape
to infinity (orbits of type III).

In the first case the photons may escape to one of the two black holes, or
to infinity. A beam of photons (Fig. 17) coming from infinity is separated into
three sets, one (I) leading to the black hole M1 the second (II) leading to the
black hole M2, and the third (III) leading to infinity.

The three sets are fractal and their basic property is that between two orbits
of different sets there is one orbit of the third set. For example in Fig. 17 between
the orbits 1 leading to M1 and the orbit 2 leading to infinity, there is an orbit
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3 leading to M2 (in fact there is a set of orbits (III) leading to M2). Similarly
between the orbit 1 (M1) and the orbit 3(M2) there is the orbit 4 leading to
infinity, etc.

The three sets of orbits I, II and III are intertwined in a fractal way.
In the case of particles of nonzero rest mass, with energy smaller than the

escape energy, the orbits can escape to the black holes M1 and M2 only. In such a
case there are some stable periodic orbits and orbits close to them do not escape
to any of the black holes.

In recent years much more work has been done in this problem and in other
relativistic problems where chaos is present.

An important case with application to cosmology is the Mixmaster Universe
model ([6], [64]). This represents a particular solution of Einstein’s equations that
has three different scale factors α, β, γ along the axes x, y, z. These equations
are

2α = (e2β − e2γ)2 − e4α

2β = (e2γ − e2α)2 − e4β (18)
2γ = (e2α − e2β)2 − e4γ

The basic property of this model is that the two scale factors are positive
and one negative (or two negative and one positive). Therefore, the model ex-
pands along certain directions and contracts along others. But the directions of
expansion and contraction change in a chaotic way.

There has been much analytical and numerical work on this model. A strange
feature of this model is that the Lyapunov characteristic number is zero, yet the
system seems to be chaotic. For some time it was expected that the Mixmaster
model may be integrable, but more recently it was established that it is nonin-
tegrable [57], [26], [31]. On the other hand the Mixmaster model is not ergodic
[33], and has no periodic orbits.

These somewhat conflicting properties can be understood if we notice that
the Mixmaster model is not compact, i.e. its orbits escape in general to infinity.
In particular this property explains why the Lyapunov characteristic number is
zero. In fact, if a particle tends to infinity, a nearby particle deviates from it
linearly in time, i.e.

ξ = ξ0t (19)

as in the case of two nearby orbits escaping from a galaxy. Therefore the Lya-
punov characteristic number is given by

LCN = lim
t→∞

ln| ξ
ξ0

|
t

= lim
t→∞

lnt

t
= 0 (20)

and this is equal to zero. But the finite time LCN is positive, and this indicates
that the Mixmaster model is chaotic for all finite times (Fig. 18). This behaviour
is similar to a chaotic scattering case [26].

There are more general cosmological models where chaos is important. In
fact the role of chaos in Cosmology seems to be more and more appreciated in
recent years.
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Fig. 18. The short time Lyapunov characteristic number in the mixmaster model as
a function of t for (a) 0¡t¡1000, and (b) 2000¡t¡3000. The average value is positive and
tends to zero as t.

In a similar way in the modern unified theories of the Universe (superstrings,
quantum gravity, etc) chaos seems to play a significant role that only recently
has started to be explored.

10 Chaos in Stellar Pulsations

The variable stars have only rarely completely regular pulsations. In most cases
they have irregularities in the period and in the amplitude of the pulsations.

In many cases it is even impossible to define an average period of the variable
stars. Various types of irregular variables appear in specific regions of the H-R
diagram.

A review of the various studies of irregular variable stars was given some
years ago by Perdang [70].

A classical method to study the variations in stellar models is numerical
hydrodynamics. In the case of radial oscillations one separates the variable star
in a number of concentric shells and follows their evolution in time [12] by solving
the hydrodynamic and heat flow equations (Fig. 19). These solutions give good
agreement with observations.

An alternative method is to consider the equations for the amplitudes of the
most important excited modes. By solving numerically the so-called “amplitude
equations” one finds results that are consistent with the hydrodynamic results
[32], [9], [10].

The amplitude equations are of the form

dα1

dt
= κiαi + Ni (21)

where Ni are functions containing the non-linear terms. What is remarkable is
that accurate results are found if one considers only two or three modes (i=2,
or 3), and Ni contains only quadratic and cubic nonlinearities.
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Fig. 19. The variations of the radii of various layers of a pulsating variable star as a
function of t.

Thus, instead of the partial differential equations of hydrodynamics, we reach
a problem of coupled ordinary differential equation, which is very similar to the
problems of dissipative systems of particle dynamics, that we mentioned above.

A special case of particular interest is the case of radial perturbations around
a state of hydrodynamical equilibrium. As it was pointed out by Woltjer [83] long
ago, this problem can be formulated as a Hamiltonian system of a finite number
N of degrees of freedom.

The Hamiltonian takes the form

H =
1
2

N∑

i=1

pi
2 + V (22)

where V contains terms of order 2,3, and possibly higher order terms

V =
1
2

N∑

i=1

ωi
2qi

2 +
1
3

N∑

i,j,k=1

V ijk
(3)qiqjqk + ... (23)

This Hamiltonian is of the same form, as those used in galactic dynamics. An
extensive use of such a Hamiltonian in studying stellar pulsations was made by
Perdang and Blacher [71], [72].

We will not discuss this subject further, but only refer to a related review
article by Perdang [70]. Perdang and his associates found chaotic oscillations
that can be described by such a Hamiltonian formalism. The analogy with our
dynamical problem of galactic astronomy is astonishing.

The reduction of the partial differential equations of hydrodynamics (like
those encountered in stellar pulsations) to a set of ordinary differential equa-
tions can be extended to more general problems. In fact there is an analogy
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between partial and ordinary differential equations. There are integrable and
nonintegrable systems of partial differential equations, as there are integrable
and nonintegrable systems of ordinary differential equations. In the integrable
cases there are infinite conserved quantities, like the integrals of motion of the
ordinary differential equations. These systems have as particular solutions the
solitons, i.e. solitary waves that move unchanged, even after interacting nonlin-
early with each other.

Of even greater importance is the fact that many nonintegrable systems
of partial differential equations are close to integrable and they have soliton
solutions, which decay only slowly in time.

This subject has a close analogy with the nonintegrable systems of ordinary
differential equations that are close to integrable, like the systems encountered
in galactic dynamics.

11 Chaos in Solar Activity

It is well known that the solar cycle repeats itself every 11 years, but not exactly
in the same way (Fig. 20). This phenomenon can be explained by assuming that
the solar cycle is due to a strange attractor ([76], [77]). This can be shown by
reconstructing the sunspot data Mi for the successive days i in a 3-dimensional
space (Mi, Mi+d, Mi+rd), where d is a fixed delay time. A projection of the
reconstructed manifold on a plane is shown in Fig. 21a. Spiegel and Wolf [77]
selected the delay interval d=1200 days, after some experimentation. In Fig. 21a

Fig. 20. The solar activity (Wolf numbers) follows the 11-year cycle, but different
cycles are not the same.
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Fig. 21. Reconstruction of the sunspot data (Wolf numbers Mi, Mi+d, Mi+2d for all
days i and a delay d=1200 days), (a) Projection of the lines joining successive points
on a plane, (b) After filtering the Fourier components by a cutoff at 1 year the figure
tends to a strange attractor.

we see a chaotic behaviour, but no detailed information can be drawn from this
figure. However, after using a filter that eliminates all Fourier components with
period one year or less, one finds the curve of Fig. 21b, which is reminiscent of
the Lorentz strange attractor of Fig. 15.

This strange attractor explains the variations of the sunspot cycles, and even
more important variations like the Maunder minimum. This refers to the fact
that the solar activity was practically nonexistent during the reign of Louis IV,
the king that chose the sun as his emblem. During that period the sun was not
covered by sunspots. This phenomenon can now be explained by means of a
strange attractor with a 5-dimensional fractal dimension [77].

Therefore, the theory of chaos has important applications in explaining the
solar activity. However, the work done in this field is still rather limited.

Another application refers to the solar flares. This phenomenon is a manifes-
tation of an important chaotic process that is called “self-organized criticality”
([58],[4]). Namely the energy of the magnetic field is continuously accumulated
in certain regions and it is released at irregular time intervals in the form of
flares. This phenomenon is very similar to earthquakes, that also accumulate
energy from the motion of the plates, and release it at irregular time intervals.
This subject will be discussed during our workshop by Dr. Papazachos.

Therefore, the theory of chaos has useful applications in the most important
solar phenomena. Similar phenomena appear in other types of stars, and in active
galaxies, like active galactic nuclei and quasars.

However, a much more detailed study of these phenomena is required be-
fore we understand them completely. I only stress here the similarity of these
problems with the corresponding phenomena of galactic dynamics from a math-
ematical point of view.

A conclusion from my review is that Order and Chaos play a very important
role in Astronomy. Much work has been done already but the prospects of this
new field are practically unlimited. I do not doubt that the study of Order and



Order and Chaos in Astronomy 27

Chaos will help to unify Physics and Astronomy from their most elementary
constituents to the whole Universe.

References

1. Arnold, V.I.: Sov. Math. Dokl. 2, 245 (1961)
2. Arnold, V.I.: Sov. Math. Dokl. 5, 581 (1964)
3. Arnold, V.I. and Avez, A.: Ergodic Problems of Classical Mechanics (Benjamin,

New York, 1968)
4. Bak, P.:How Nature Works (Springer Verlag, New York, 1996)
5. Barbanis, B.: Z. Astrophys. 56, 56 (1962)
6. Belinskii, V.A. and Khalatnikov, I.M.: Sov. Phys. JETP 29, 911 (1969)
7. Birkhoff, G.D.: Dynamical Systems (Amer.Math.Soc., Providence, R.I., 1927)
8. Bishop, J.L.: Astrophys. J. 305, 14 (1986)
9. Buchler, J.R.: in Chaos in Astrophysics, ed. by Buchler, J.R., Perdang, J. and

Spiegel, E.A. (Reidel, Dordrecht, 1985) p. 11
10. Buchler, J.R.: in Chaotic Phenomena in Astrophysics, ed. by Buchler,J.R and

Eichhorn, H., N.Y. Acad.Sci. Annals 497, 37 (1987)
11. Chirikov, B.V.: Phys.Rep. 52, 263 (1979)
12. Christy, F.R. : Quart. R.Astr. Soc. 9, 13 (1968)
13. Contopoulos, G.: Stockholm Ann. 20, No 5 (1958)
14. Contopoulos, G.: Z. Astrophys. 49, 273 (1960)
15. Contopoulos, G.: Astrophys. J. Suppl. 13, 503 (1966)
16. Contopoulos, G.: in Les Nouvelles Methodes de la Dynamique Stellaire, ed. by
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Abstract. The theory of adiabatic invariants is developed to cover the gyration of
a star about a nearly equipotential orbit in a galaxy with a strong bar. The guiding
centres for such orbits follow curves of constant Ergos. The energy and the gyration
adiabatic invariant give two constants of the motion. Critical Ergos curves have a pair
of X-type gravitational neutral points which provide switches between trajectories that
have the star circulating forward or backward relative to the corotating frame of the
bar and those that liberate back to remain on one side of the galaxy’s centre.

An attempt to discover the dynamical basis of the apparently random switching,
that has been observed in computations of orbits with finite amplitudes of gyration,
FAILS to find any such chaos at small gyration amplitudes, where Ergos curves give a
good description of guiding centre motion.

1 Introduction

Eddington [15] looked for solutions of the collisionless Boltzmann equation that
lacked axial symmetry but were steady in non-rotating axes. He introduced the
idea of principal velocity surfaces to which the principal axes of the velocity ellip-
soid were orthogonal. He then proved that, if the velocity ellipsoids were triaxial
corresponding to three independent integrals quadratic in the velocities, the prin-
cipal velocity surfaces had to be confocal quadrics. Also the potential had to be
of a special form corresponding to Stackle’s separable systems. Chandrasekhar
[6] vehemently criticised Eddington’s assumption that principal velocity surfaces
existed but the analysis without that assumption produced no new solutions of
interest. Meanwhile Clarke [7] derived the algebraic integrals corresponding to
Eddington’s system which were exploited to great effect by Kuzmin [20] and
others. Lynden-Bell [21] gave a new analysis without assuming that the inte-
grals were quadratic, but while he derived all six integrals and showed that the
turning points lay on the confocal quadrics, he again found no new systems.
It was de Zeeuw [12] & [13] who’s careful categorisations of the orbital struc-
ture in these separable systems that revived interest in them. For an elementary
derivation in axial symmetry, see Lynden-Bell [25]. Rather less is known about
the analytic form of the integrals of the motion in systems that are only steady
when viewed in rotating axes. Freeman [16] gave a fine analysis of the special
systems in which the forces are linear functions of position which form a natural
development of Riemann’s homogeneous ellipsoids. Vandervoort [28] discovered
a Stackle system in rotating axes which was further developed by Contopoulos
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and Vandervoort [9] but the density corresponding to this special potential is
not positive everywhere. de Zeeuw and Merritt [11] developed a theory suitable
for the cores of rotating systems, while Berman and Mark [3] analysed nearly
circular orbits trapped in weakly non-linear spiral waves and gave analytical ap-
proximations to the slightly non-circular motion of the guiding centres. Binney
& Tremaine [4] gave a general discussion of computed orbits.

For individual orbits a significant advance was made by L.S. Hall [17] who
asked for invariant relations for one energy rather than an integral of the motion
for all energies. This gave him a far wider class of potentials than those for which
exact integrals exist Whittaker [29] Marshall & Wojciechowski [26].

Here we develop the adiabatically invariant gyration of a star about a guiding
centre to give us an approximate integral independent of the energy, which is
especially useful in the complicated region of barred galaxies close to corotation.
The analysis of orbits into a gyration about a guiding centre’s motion shows a
bifurcation at the gravitational neutral points at the ends of the bar. Could it
be that it is the phase of the gyration motion as the star enters the bifurcation
region that determines which way the orbit goes? If so, we have a natural origin
for the chaos that has been observed in orbits near corotation Contopoulos et
al., [10]. In this paper, Sect. 2 is devoted to exact special cases in which the two
dimensional motion in the galactic plane is integrable, Antonov & Shanshiev
[2]. Section 3 develops the theory of guiding centre motion; when the gyration
is of zero amplitude this motion is along Ergos curves which are not far from
equipotential Lynden-Bell [22]. Section 4 considers the finite gyration about
slightly modified Ergos curves while Sect. 5 analyses the motion near saddle
points and the behaviour of the switch that directs the orbit into libration or
circulation.

In the related problem in which a charged particle moves in an electromag-
netic field some progress has been made in classifying the separable systems’
scalar and vector potentials but even for axial symmetry Lynden-Bell [23] such
classification is far from complete, although the charged Kerr Metric with G = 0
provides a very interesting special case Lynden-Bell [24].

2 Exact Special Cases

In rotating axes the equations of motion of a star in a galactic plane may be
written

R̈ = ∇Φ− 2Ω × Ṙ (1)

where Φ = ψ + 1
2Ω

2R2 is the gravitational plus centrifugal potential measured
in the sense that Φ is large in those regions to which particles are attracted by
gravitational or by centrifugal forces. Two special cases give the clue as to what
to do next

1. When ∇Φ = g is a constant then we may orient the y axis upwards, i.e.,
along −g. We then have a case analogues to the E × B/B2 drift of plasma
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physics, writing gy = −g = dΦ/dy

ẍ = 2Ωẏ , (2)

ÿ = −g − 2Ωẋ . (3)

We integrate the first and insert it into the second to find with c a constant

ẋ = 2Ω(y − c) , (4)

ÿ + 4Ω2(y − c+ 1
4gΩ

−2) = 0 , (5)

so y oscillates harmonically about the value c− 1
4gΩ

−2 = y0.
In plasma physics (2) and (3) are commonly combined by writing ζ = x+ iy.
Then

ζ̈ + 2iΩζ̇ = −ig ,
so

d

dt

(
e2iΩtζ̇

)
= −ige2iΩt ,

which may readily be integrated twice to give

ζ = − 1
2gΩ

−1t+ ae−2iΩt + ζ0 , (6)

where a and ζ0 are complex integration constants. Thus the motion consists
of a circular gyration of amplitude |a| and frequency 2Ω about a guiding
centre that moves with velocity vd = − 1

2gΩ
−1x̂ starting from point ζ = ζ0.

Notice that we may write this drift velocity in the form g × (2Ω)/4Ω2 in
analogy to E×B/B2 . The fact that g = ∇Φ means that the guiding centre’s
motion is along an equipotential but that is only true when the equipotentials
are of constant curvature as we show presently. When g = ∇Φ is not constant
but Φ is a non-linear function of y, (2) and (4) are still valid and (3) may be
replaced by

ÿ = dΦ/dy − 4Ω2(y − c) =
d

dy

[
Φ− 2Ω2y2 + 4cΩ2y

]
. (7)

In general we now have a non-linear oscillator with an energy–like integral

1
2 ẏ

2 − Φ(y) + 2Ω2y2 − 4cΩ2y = I = constant , (8)

but let us start with the simplest case in which g is expanded to first order
about y = y0 the trajectory of the guiding centre. Then

Φ = Φ0 − g0(y − y0) + 1
2Φ

′′
0(y − y0)2 .

Equation (5) then takes the form

ÿ + κ2(y − y0) = 0
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where κ2 = 4Ω2 − Φ′′
0 evidently

y − y0 = Im(aeiκt) .

and by (4)
ẋ = 2Ω(y − y0) + 2Ω(y0 − c) ,

x =
2Ω
κ

Re (
aeiκt

)
+ 2Ω(y0 − c)t+ x0 . (9)

If we write
ζ = x+ i

2Ω
κ

(y − y0) ,

then
ζ = (2Ω/κ)aeiκt + vdt+ ζ0 ,

where the first term represents an elliptical gyration at angular frequency κ
and the remainder is the drift motion of the guiding centre at velocity

vd = −g02Ω/κ2

along y = y0. In the non–linear case (8) y has some mean value which we
may again call y0 and 〈ẋ〉 = 2Ω(y0 − c) where 〈ẋ〉 indicates the temporal
mean.
Evidently ẋ−〈ẋ〉 = 2Ω(y−y0) so x executes an oscillation out of phase with
y − y0, making a closed curve which moves with the guiding centre. More
generally again Φ′′

0 might depend on x. Then (2) and (3) would be replaced
by

ẍ = 2Ωẏ +
∂Φ′′

0

∂x
1
2 (y − y0)2 ,

ÿ =
∂Φ0

∂y
− 2Ωẋ .

if we again write ẋ = 2Ω(y−c) then c must vary, albeit slowly, since (y−y0)2
is small. We again get

ÿ + κ2(y − y0) = 0

but now y0 may depend weakly on time.
We form the adiabatic invariant

J =
1
2π

∮
ẏdy , (10)

which will depend on y0 through the value of κ2 . We then use the invariance
of J and the exact conservation of the energy 1

2Ṙ
2 − Φ = ER to determine

the small changes in c and y0.
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2. In the above, the equipotentials were lines of constant y (or almost so).
More generally suppose that the equipotentials Φ = constant are curved
with radius of curvature r at the position considered. If Φ = Φ(r) we may
solve (1) in cylindrical polar coordinates centred at the centre of curvature.
With φ the azimuthal angle we have

r−1d/dt(r2φ̇) = −2Ωṙ

so
r2(φ̇+Ω) = h = constant , (11)

and
r̈ − rφ̇2 = Φ′(r) + 2Ωrφ̇ ,

hence
r̈ = d/dr

[
Φ− 1

2

(
hr−1 −Ωr

)2
]
, (12)

so
1
2 ṙ

2 −
[
Φ− 1

2

(
hr−1 −Ωr

)2
]

= ER .

Notice that if the centre of curvature were the galaxy’s centre then r = R.
This energy is 1

2 (ṙ
2 +r2φ̇2)−Φ, precisely the energy in the rotating axes. We

have written motion in an axially symmetrical potential in this complicated
way (in rotating axes) not merely to see the analogy with problem (1) but
also because we now wish to consider problems lacking any global axial
symmetry which are nevertheless steady when viewed from rotating axes.
Our results are in a suitable form for applications to barred spiral galaxies
and to galaxies with strong non-radial gravity fields.

We shall now generalise the above results to cases where the equipotentials
are not of constant curvature but have their curvatures varying continuously
along the orbits. Provided that the epicyclic motion is rapid compared with
the drift motion of the guiding centre along, or almost along, the equipotential
we expect an adiabatic invariant for the oscillation across the equipotentials of
the form J = (2π)−1

∮
ẏdy . This together with the exact conservation of the

energy relative to the rotating axes, gives two integrals of the motion and allows
the calculation of the orbits generally and of the drift trajectories of the guiding
centres in particular. In the next section we shall concentrate on finding the drift
trajectories of the guiding centres. Among all possible orbits will be some for
which the adiabatic invariant governing the gyration about the guiding centre is
and remains zero. Thus there will be a one parameter family of non-oscillating
trajectories.

3 Drift Trajectories – Ergos Curves

Near corotation, drift velocities are slow and guiding centre accelerations neg-
ligible, so (1) can be rewritten in the galactostrophic approximation in which
Coriolis force balances the gradient of the potential

2Ω × Ṙ = ∇Φ , (13)
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so
Ṙ = ∇Φ × Ω/(2Ω2) . (14)

The drift velocity Ṙ is thus along an equipotential (of constant Φ) - this is
just the E × B/B2 drift of plasma physics. However, here this approximation is
unsatisfactory since it actually conflicts with the exact conservation of energy
whenever |∇Φ| varies along an equipotential. Ṙ2 as given by (14) clearly varies
along an equipotential so ER = 1

2Ṙ
2 − Φ clearly varies along an equipotential.

But ER is strictly conserved along any trajectory so the approximation that
gave the drift trajectories along equipotentials conflicts with exact conservation
of energy. We now give a treatment free of such conflict.

We start again but now suppose that the drift trajectories lie at small angles
to the equipotentials rather than along them. Let n̂(x, y) be the unit normal to
the drift trajectories with the sense that n̂ × Ω̂ ≡ t̂, gives the direction of the
drift velocity. Ω̂ is the vector Ω/Ω . Then n̂ lies at a small angle to ∇Φ c.f. (14).
Further we shall define the curvature vector of the drift trajectories K(x, y) . K
is perpendicular to the trajectory and points towards its centre of curvature from
(x, y) . The magnitude of K is the reciprocal of the radius of curvature of the
drift trajectory at (x, y). A star travelling along a drift trajectory at velocity v
will have a transverse acceleration Kv2 towards that centre of curvature. Taking
components of (1) along the trajectory’s normal n̂ we thus find

K · n̂v2 = n̂ · ∇Φ− 2Ωv . (15)

To simplify this notation we put K · n̂ = K noting that K and n̂ are both
perpendicular to the trajectory; K is either |K| or −|K| depending on the sense
of the trajectory’s curvature. Solving for v we find

v =
1
K

[√
K · ∇Φ+Ω2 −Ω

]
=

n̂ · ∇Φ√
K · ∇Φ+Ω2 +Ω

. (16)

Notice the close correspondence between this expression and (14) which gives
v = |∇Φ|/(2Ω) . Evidently if the angle between n̂ and ∇Φ is small enough
to have its square neglected, and if |K∇Φ| � Ω2 the two expressions become
equal. However (16) is exact while (14) was approximate. We now use exact
energy conservation relative to the rotating axes

ER = 1
2v

2 − Φ = 1
2

(n̂ · ∇Φ)2[√
K · ∇Φ+Ω2 +Ω

]2 − Φ ≡ E(x, y) . (17)

The function E(x, y) is called the Ergos (Lynden-Bell, [22]). The definition is
implicit since n̂ is the normal to the trajectories along which E is constant and
whose curvatures are given by K(x, y) . So far all is exact; the Ergos curves along
which E is constant give the drift trajectories of the (zero amplitude) guiding
centres. Now for any function F that is −Φ or any better approximation to the
Ergos, writing suffixes to denote differentiation, and

s = (F 2
x + F 2

y ) 1
2 , (18)
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n̂ = −s−1(Fx, Fy); n̂ × Ω̂ = t̂ , (19)

we have
K =

(
t̂ · ∇)

t̂ = s−3 (
F 2

xFyy − 2FxFyFxy + F 2
yFxx

)
n̂ . (20)

Wherever |K · ∇Φ| is not as large as Ω2 it is easy to find approximations to
the Ergos. At zero order we use −Φ for F and calculate first approximates to
n̂ and K from the above formulae. Substituting them into (17) we find a first
approximation to the Ergos E1(x, y) . Using E1 for F in the above formulae we
calculate 2nd approximations to n̂ and K and putting them into (17) we get
E2(x, y) . Near corotation this will converge quite quickly to give the Ergos and
the level surfaces of it give the Ergos curves along which the guiding centre
trajectories lie. For related work on such systems see Antonov & Shanshiev [2].
Very close to gravitational neutral points where ∇Φ = 0 it is easiest to calculate
the Ergos curves as trajectories with zero gyration directly. Figs. 1 and 2 give
the equipotentials and the Ergos Curves.

Fig. 1. Equipotentials of Φ = ψ + 1
2Ω

2R2 where R2 = x2 + y2; ψ = GM(b +
s)−1 [

1 − 0.02b2(x2 − y2)s−4] ; and s2 = R2 + b2. The angular velocity of the bar,
Ω, is chosen so that Ω2s = GM/(b + s)2, that is Ω2 = GMb−3/(4 + 3

√
2). In the

diagram GM = 1 and b = 1.
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Fig. 2. Ergos curves for zero gyration and the potential of Fig. 1.

4 The Gyration Adiabatic Invariant

At any point R0 the equipotentials have some curvature K◦ and near there
Φ can be approximated as being a function of r the distance to the centre of
curvature. Thus, in a region near R0 the angular momentum about that centre
of curvature will be approximately conserved. Taking the cross product of (1) by
r the vectorial distance from that centre of curvature and using Ṙ = ṙ we find

d/dt(r × ṙ) = −2r × (Ω × ṙ) +O(ε2) ,

so
r × (ṙ + Ω × r) = h +O(ε2) , (21)

as in (11), but now h is only approximately constant locally. (21) will be just as
true of the motion of the guiding centre as it is of the motion of the star that
gyrates about that centre. Let the guiding centre be at r0 and the star at r0 + η
then working to first order in η writing r = r0 + η in (12)

η̈ + κ2η = −(�r−2
0 −Ω)δh ,

where κ2 = −d2Φ/dr2 − h2r−3
0 + Ω2r0 . We could have chosen to compare

the motion of our star with that of a guiding centre with the same h and put
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δh = 0 but as neither h nor δh are quite constant we have chosen not to do that.
Evidently η vibrates harmonically about κ−2(Ω − hr−2

0 )δh = η0 . We shall now
assume that this η vibration is sufficiently fast that the corresponding action is
adiabatically invariant. So the invariant is

J =
1
2π

∮
η̇dη =

∮ √
2[ER + Φ] − (hr−1 −Ωr)2dr

= ∆ER/κ

where ∆ER is the excess energy above that of the guiding centre. The integral
is evaluated with ER and h fixed and with Φ = Φ(r, φ,R0) only weakly depen-
dent on φ and expanded about the point R0 and φ . In the integration R0 and
φ are held fixed and only r varies. Henceforth any dependence on φ may be
incorporated into the R0 dependence. Thus we find

J = J(ER, h,R0) .

∆ER and J are second order in the displacement from the guiding centre. We
are now able to give a correction of this order to the guiding centre’s motion
which we earlier determined in the limit when J was zero. When J is non-zero
the vibration about the guiding centre has extra energy ∆ER = κJ . While J
is fixed; κ still varies from point to point. Thus the effective potential for the
guiding centres motion is

Φ̃ = Φ− κJ ,

so that the energy of the total motion is

ER = 1
2Ṙ

2 − Φ = 1
2Ṙ

2
0 − Φ̃ ,

where Ṙ0 is the motion of the guiding centre. Thus the Ergos curves for guiding
centres of given J should be calculated with Φ̃ replacing Φ . Fig. 3 shows a banana
orbit in which one can see the gyration especially near the ends of the banana.
Fig. 4 shows an orbit that starts librating in a banana close to the critical ergos
curve but then switches to circulation outside corotation.

5 Is the Saddle-Point Switch Chaotic?

When in the 1960’s Michel Hénon [19], [18] and George Contopoulos [8] discov-
ered the fascination of the onset of chaos in stellar dynamical orbits I saw that
a new branch of mathematics would develop, (Drazin [14]), but by that time I
was more interested in the astrophysical problems cast up by astronomy than
in the purely mathematical ones. I have never regretted that decision, though I
have watched with admiration the developments pioneered by my more math-
ematical colleagues. One of the early examples of chaos was in Doug Allen’s
thesis [1] on the behaviour of coupled disk dynamos. The problem was suggested
by Bullard and its solutions gave some indication of why the Earth’s magnetic
field suffers chaotic reversals. Later I learned of the pioneering studies of Mary
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Fig. 3. A banana orbit showing the effects of gyration about the moving guiding centre
especially near the ends of the banana.

Fig. 4. A banana orbit very close to the critical Ergos curve, which switched from a li-
brating orbit to one circulating outside corotation. Although integration was continued
much longer it did not switch back. Either the orbit must hit a very small hole to cross
back or the inaccuracy of the integrator allowed a small change in the guiding–centre
motion so that it no longer came close to the critical switch.
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Cartwright [5] who came upon the chaotic behaviour in the more mathematical
context of differential equations. A deep mathematical study of the conditions
that generate chaos in such systems was made by Colin Sparrow [27] under the
aegis of Peter Swinnerton-Dyer and DLB gained a taste for their mathematical
rigour by attending some of their lectures on chaos. What little he remembers
involved orbits that continually came back into a critical region from which they
could emerge in one of several different directions. It was the critical switching
between these that led to chaos in the solutions. Over the years he has heard
George Contopoulos talk about chaos many times, and chaos near corotation in
orbits that get close to the ends of the bar in barred spiral galaxies has often been
found. When George spoke on the subject at the Saltsjobaden Meeting in De-
cember 1995 [10], DLB had the belief that the saddle points in the gravitational
potential provided just that critical switch with two very different outcomes that
Sparrow needed. I thought the gyrations of the stellar orbit about its guiding
centre would provide just that wobble between one side of the separatrix and
the other needed to give chaos. The pressure of preparing this talk provided the
stimulus needed to work this out properly. We start by analysing the switch at
one of the gravitational points shown in Fig. 1. Centering our coordinates x, y
on the upper saddle point Φ may be expanded for x, y small in the form

Φ = Φ0 + 1
2α

2x2 + 1
2β

2y2 ,

so the equations of motion (1) take the form

ẍ = −α2x+ 2Ωẏ ,

ÿ = β2y − 2Ωẋ

writing D for d/dt we see that

(D4 + ω2
0D

2 − α2β2)x = 0 ,

where ω2
0 = α2 + 4Ω2 − β2, and y obeys the same equation. In practice α2 +

4Ω2 − β2 > 0. Writing D = iw we see that, for w2 there is one positive root

w2 = w2
1 = 1

2w
2
0

(
1 +

√
1 + 4α2β2ω−4

0

)

and a negative one with

−ω2 = γ2 = 2ω−2
0 α2β2/

(
1 +

√
1 + 4α2β2ω−4

0

)
.

The dying solution, γ > 0, e−γt corresponds to a contraction of the points
along the separatrix line from upper left or bottom right while the growing eγt

solution corresponds to expansion along the separatrix line from the saddle both
to lower left and upper right. Together these motions give x = γ(Ae−γt +Beγt),
2Ωy = (γ2−α2)Ae−γt+(γ2+α2)Beγt where A & B are arbitrary constants with



Critical Ergos Curves and Chaos at Corotation 41

the separatrices given by B = 0 and A = 0 respectively. This flow is drawn in
Fig. 6. At the saddle the flow switches to left or to right depending on the sign of
B which decides on which side of the separatrix the guiding centre approaches.
However, superposed on these motions is an elliptical gyration due to the real
roots ω2 = ω2

1 , these give x = ω1Ceiω1t and 2Ωy = (ω2
1 − α2)iCeiω1t where C is

an arbitrary complex constant and the real x and real y are the real parts of the

Fig. 5. A chaotically switching orbit of large gyration amplitude computed by Con-
topoulos et al 1996.

Fig. 6. Guiding centre flow close to the saddle point. Critical equipotentials (shown
dashed) are close to the critical Ergos curves.
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Fig. 7. An orbit outside corotation shows gyrations of slightly variable amplitude.

expressions given. Interestingly this elliptical1 gyration continues unaffected by
the saddle point.

Thus the switch to left or right is determined not by the position of the star
but by the position of its guiding centre. DL-B’s concept at the start of this
investigation was that the switch would act on the star’s position, so that the
phase of the gyration as the star approached the saddle point would be crucial.
Now this concept is seen to be false there is no random switching because the
guiding centres follow the ergos curves. What then is the origin of the apparent
switching of orbits seen in Figs. 4 & 5?

Three possibilities are

1. At finite gyration amplitudes there are resonances between the gyration and
the motions of the guiding centres which lead to oscillations in the value of
J and of the energy of the guiding centre’s orbit which allow it to cross the
separatrix before approaching the saddle–point switch.

2. The zero gyration motion of the guiding centre along an ergos curve is itself
unstable.

3. For bars with significant non-radial forces the motions along the ergos curves
are too rapid for the good conservation of the adiabatic invariant. Accurate
separation between a guiding centre motion and a gyration is not possible

1 For Fig. 6 the ellipse is almost round being only 1% flattened in y.
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except close to the saddle–points. Orbits close to the separatrix will return
on different sides of it on different approaches to the saddle–points.

Thus we have been unable to isolate the origin of the apparent randomness
in the switching. However, we hope we have added some understanding of the
orbits and of their integrals of motion.

Figure 7 shows an orbit that circulates “backward” outside corotation. No-
tice that even at the same azimuth there are small differences in the gyration
amplitude; this may be due to inexact conservation of the adiabatic invariant.
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Stellar Dynamics and Molecular Dynamics:
Possible Analogies

Andrea Carati and Luigi Galgani
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I–20133 Milano, Italy

Abstract. In stellar dynamics one is accostumed to deal with the Lynden–Bell dis-
tribution, which presents two peculiar characteristics: a) it resembles the quantum
Fermi–Dirac distribution, and b) describes a state of metaequilibrium, that is expected
to evolve on much longer time scales to a standard Maxwell–Boltzmann equilibrium.
Here it is illustrated how an analogous situation seems to occur in molecular dynamics,
described within the context of classical mechanics. The problem concerns the contri-
bution of the internal degrees of freedom, typically the vibrations, to the specific heat;
correspondingly, the metaequilibrium state leads to a Bose–Einstein–like rather than
to a Fermi–Dirac–like distribution. We also point out that in molecular dynamics the
“nonclassical” features seem to be related to the fact that the evolution of the energy
is dominated by the presence of rare but conspicuous jumps, as in processes of Lévy
type; this too has some analogies with stellar dynamics.

1 Introduction

About thirty years ago it occurred to one of the present authors, in collabora-
tion with A. Scotti and C. Cercignani [1][2], to observe a quantum–like feature
in the problem of the specific heats studied in the context of classical mechan-
ics. The model considered was that of Fermi–Pasta–Ulam [3], describing a one–
dimensional crystal with nonlinear interactions between adjacent atoms. The
observation was that, if the specific energy was small enough and the energy was
given initially to the lowest–frequency mode, the distribution of energy among
the modes, estimated by numerical solutions of the equations of motion, turned
out to have a Planck–like form. Moreover, to a great astonishment, even the
action entering such a distribution turned out to be of the order of magnitude
of Planck’s constant. It took some months to become convinced that the latter
fact was neither a mistake nor an accident, as we briefly recall now. The relevant
point is that, in the model, realistic molecular parameters had been introduced;
for example, for a model of crystal Argon, one introduces the mass m of Argon
and a realistic Lennard–Jones interatomic potential V (r) = 4ε[(σ/r)12 −(σ/r)6],
with certain parameters ε and σ given in the literature. Now, one immediately
checks that the action A naturally built up from the given parameters m, ε, σ
is just A =

√
mε σ; on the other hand it turns out that for realistic parameters

there exists the relation A = 2Z� where � is the (rationalized) Planck’s con-
stant and Z the atomic number. This remark explains how in classical models of
molecular dynamics Planck’s constant is introduced, so to say by hands, through
the values of the molecular parameters.

G. Contopoulos and N. Voglis (Eds.): LNP 626, pp. 44–55, 2003.
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In such a way an adventure was started, which consisted in trying to prove
that, at least in the problem of the specific heats (see however [4], where the
electrodynamics of point particles is also discussed), classical mechanics might
not be inconsistent with quantum mechanics, or at least in understanding how
something like this might make sense. Having explained in which way Planck’s
constant had been introduced, somehow by hands, through the molecular pa-
rameters, the main problem was then to understand how the dynamics itself,
described by Newton’s equations with given potentials, might make the job.
This is the reason why intense contacts were started with scientists working in
the field of dynamical systems, from mathematics to celestial mechanics. Perhaps
the first among them was G. Contopoulos, with whom an everlasting friendship
and scientific collaboration was initiated. The adventure had since then several
phases, with several incursions into purely mathematical aspects of the theory of
dynamical systems; a long collaboration with G. Benettin and A. Giorgilli took
place, and finally the first of the present authors joined the party.

The present phase seems to be characterized by the realization that there
should exist two (or several) well distinct relaxation times in the problem, as
is now familiar in the physics of glasses or spin glasses. The point we want to
stress here is that the existence of two relaxation times is a familiar feature in
stellar dynamics too. Indeed, one there refers to a first “violent” relaxation to a
metaequilibrium state of the type of Lynden–Bell [5] (during which the collisions
can be neglected), that should then be followed by an extremely slow relaxation
to a standard equilibrium state governed by the collisions. Moreover, such a
phenomenon of the existence of a metaequilibrium state turns out to occur, in
stellar dynamics, just in conjunction with the appearence of a quantum–like
feature, namely the Fermi–like distribution of Lynden–Bell. These two features,
namely the existence of a metaequilibrium state and its actual quantum–like
aspect, constitute the analogies of stellar dynamics with the problem of the
specific heats in classical mechanics which motivated the present talk, mainly
addressed to people working in the field of stellar dynamics.

2 Planck’s Law, Its Interpretation by Einstein,
and the Points of View of Boltzmann and of Nernst

Planck’s law is concerned with the mean energy U of a system of N harmonic
oscillators of angular frequency ω at absolute temperature T . In terms of inverse
temperature β = 1/kBT and of the quantum of energy �ω, where kB is the
Boltzmann’s constant, it asserts that the mean energy U has the form

U = N
�ω

eβ�ω − 1
. (1)

The relevant feature of this law is that in the limit of high temperatures or
low frequencies, i.e. for β�ω � 1, it leads to the “classical” value U = NkBT ,
independent of frequency (this realizes the so–called equipartition of energy),
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while it gives degeneration, i.e. the vanishing of U (in a frequency–dependent
way), for β�ω � 1.

Everyone knows how Planck’s law is usually deduced, by the standard equi-
librium argument using the Maxwell–Boltzmann principle, if energy is assumed
to be quantized, i.e. if one admits that the allowed values for the energy E are
En = n�ω, n = 1, 2, · · · . This standard argument in fact constitutes the second
deduction given by Planck himself; a variant of it, which takes into account the
zero–point energy N�ω/2, comes about if the energy levels are assumed to be
given by En = (n + 1/2)�ω.

So, Planck’s law turns out to be a consequence of quantization. Conversely,
it was shown by Poincaré [6] (in one of his last papers, that he wrote under the
stimulus of the discussions at the first Solvay Conference [7]) that quantization
is necessary if one has to recover Planck’s law at all. Actually, an accurate anal-
ysis of the paper of Poincaré shows that the situation is not so clear, and for
example Einstein never was convinced of this necessity of quantization. This is
witnessed by some remarks he made in his scientific autobiography [8]. Indeed,
after having recalled how he himself had “showed in a definitive and direct way
that it is necessary to attribute a certain immediate concreteness to Planck’s
quanta and that, under the energetic aspect, radiation possesses a sort of molec-
ular structure”, after a few lines he adds: “This interpretation, that almost all
contemporary physicists consider as essentially definitive, to me appears instead
as a simple provisional way out”.

What did Einstein have in mind in saying these words? In our opinion the
answer is found in his contribution to the Solvay Conference, where he showed
how Planck’s law can be obtained by arguments which make no reference to
quantization at all. The key point is a physical interpretation of the procedure
that had been followed by Planck in the first deduction of his law, on October
19, 1900. Let us recall that in that paper Planck had obtained his formula as a
solution of the ordinary differential equation (we are using here a contamination
of the notations of Planck and of Einstein)

dU

dβ
= −(

�ω U +
U2

N

)
, (2)

to which he had arrived, with no real physical interpretation, by a purely formal
interpolation between two limit equations, well adapted to the cases of high
frequencies and low frequencies respectively. What Einstein did, was to split
such an equation into a system of two equations, namely

dU

dβ
= −σ2

E (3a)

σ2
E = �ω U + U2/N , (3b)

where there appears a further quantity σ2
E having a well definite physical mean-

ing, namely the variance of energy. Indeed the former equation (26a), relating
specific heat to variance of energy, had been discovered in the year 1903 by Ein-
stein himself in one of his first papers, as an identity in the canonical ensemble,



Stellar Dynamics and Molecular Dynamics 47

and was conceived by him as a kind of a general thermodynamic relation that
should have some more general validity. In his mind, the second relation (77)
should instead have a dynamical character, and might in principle be deducible
from a microscopic dynamics. In his very words [7]: these two relations “exhaust
the thermodynamic content of Planck’s” formula; and “a mechanics compatible
with the energy fluctuation σ2

E = �ω U + U2/N must then necessarily lead to
Planck’s” formula. So the main idea is that the energy exchanged with a reser-
voir, i.e. the specific heat dU

dβ , should be related to the energy fluctuations. In
turn, the functional dependence of the energy fluctuations on the mean energy
should fix the functional form of the mean energy in terms of temperature and
of frequency. Clearly, no reference to quantization is made here.

Another key point enters now, which goes back to Boltzmann; we refer to the
role of nonequilibrium. Indeed, being confronted with the phenomenological lack
of equipartition of energy in crystals and in polyatomic molecules, Boltzmann
conceived the idea that in such cases one was actually dealing with situations
in which equilibium had not yet been reached. In his very words: [9] “The con-
stituents of the molecule are by no means connected together as absolutely unde-
formable bodies, but rather this connection is so intimate that during the time of
observation these constituents do not move noticeably with respect to each other,
and later on their thermal equilibrium with the progressive motion is established
so slowly that this process is not accessible to observation”. In modern terms,
the situations of nonequipartition of energy should be understood as analogous
to the metaequilibrium situations occurring in glasses and spin glasses.

Let us recall that the idea of Boltzmann, according to which the situations
of nonequipartition would correspond to states of metaequilibrium, was pursued
for several years by Jeans [10], with the explicit aim of avoiding a recourse to
quantization. But the work of Poincaré on the necessity of quantization made
so strong an impression on him that he found himself forced to make a public
retractation [11] and to abandon any further attempt in that direction. We will
recall below how the problem was reopened much later, in the year 1954, by the
work of Fermi, Pasta and Ulam. We would also like to mention that the idea
of Boltzmann that there should exist a “time–dependent specific heat” is today
accepted as a trivial fact, with no mention to Boltzmann at all (see for example
[12]).

We add now here some further comments. The first remark is that there
seems to be a strong relation between the point of view of Boltzmann and that
of Einstein: the key point is the role of the dynamics in the problem of the specific
heats. According to Boltzmann, what is relevant for the specific heat of a body
is not the energy it possesses, but rather the energy it can exchange through
the dynamical interaction with a heat reservoir within a given observation time.
In turn, the latter energy, the exchangeable one, is related to the dynamical
fluctuations of the energy of the body. This is in fact essentially the statement of
the well known Fluctuation Dissipation Relation (see for example [13], of which
the relation (26a) of Einstein seems to be a precursor. In fact, the Fluctuation
Dissipation Relation has a form very similar to (26a), the main difference being
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that it involves quantities having a dynamical character. Consider a system at
inverse temperature β, and denote by E(t) its energy at time t, and by U(t)
the mean energy exchanged up to time t with a reservoir at inverse temperature
β + dβ. Then, the Fluctuation Dissipation Relation reads

dU

dβ
= −1

2
〈(E(t) − E(0)

)2〉 , (4)

the mean 〈·〉 being taken with respect to initial data with a Maxwell–Boltzmann
distribution at inverse temperature β. From this, the static relation (26a) of
Einstein is recovered at times so large that the autocorrelation of the energy
vanishes, so that E(t) and E(0) become independent and thus the quantity
1/2〈(E(t) − E(0)

)2〉 reduces to the static canonical variance σ2
E .

A final comment concerns the role of the Maxwell–Boltzmann distribution as
a statistical measure for the initial data, irrespective of the dynamics. The fact
is that, for a system of independent harmonic oscillators distributed according
to Maxwell–Boltzmann, one has for the mean energy U the value NkBT , i.e.
formally equipartition of energy. But such an equipartition, as Boltzmann would
say, concerns the mechanical energy possessed by the system just in virtue of
the choice of the initial data, and has a priori nothing to do with the thermo-
dynamic energy, which should be defined as the exchangeable one within the
observation time. The latter, i.e. the thermodynamic or exchangeable energy,
is instead measured by the dynamical fluctuations of energy. The fact that the
initial distribution of energy presents a nonvanishing variance σ2

E is of no rele-
vance for the specific heat, which depends on the exchangeable energy, i.e. on
the dynamics.

This remark explains how one can have a situation in which there is both
equipartition of energy in relation to the initial data, and Planck’s law in re-
lation to the exchangeable energy, as was first conceived by Nernst [14] in an
extremely deep, almost unknown, work (see also [15]). In particular, Nernst also
introduced a deep conception of the energy which, in the sense of Boltzmann,
does not contribute to the specific heat: on the one hand it should be charac-
terized as being, from the dynamical point of view, of ordered type (geordnete);
on the other hand it would constitute a classical analog of the quantum zero-
point energy. It is worth recalling the argument by Nernst. He assumes that the
quantum of energy �ω plays the dynamical role of a stochasticity threshold for
the harmonic oscillators; the motions would be of ordered type below threshold
and of disordered type (ungeordnete) above it. Furthermore, he assumes that
the oscillators are distributed according to Maxwell–Boltzmann, so that one has
equipartition for their mechanical energy. Now, one immediately computes the
mean disordered energy (per oscillator) E1, namely the mean energy conditioned
by E > �ω and the mean ordered energy (per oscillator) E0, namely the mean
energy conditioned by E < �ω, and one finds

E1 = kBT + �ω , E0 = kBT − �ω

e�ω/kBT − 1
. (5)
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Similarly one finds that the fraction n1 of oscillators above threshold is n1 =
exp(−�ω/kBT ). Then the exchangeable energy U can be assumed to be defined
by U = Nn1 (E1 − E0), which coincides with Planck’s law.

3 The Fermi–Pasta–Ulam Problem

The problem of a dynamical foundation for the principle of equipartition of
energy in classical mechanics was reopened in the year 1954 by Fermi, Pasta and
Ulam [3]. The interest of Fermi for this problem was indeed a rather old one, since
it goes back to his work [16] of the year 1923 (which is sometimes misunderstood
in the literature; see however [17]), where he improved the theorem of Poincaré
on the integrals of motion of a Hamiltonian system. So Fermi came back to
the problem when for the first time he had the facilities of a computer for the
numerical integration of the equations of motion of a rather large system of
particles.

As mentioned above, Fermi, Pasta and Ulam considered a system of N points
(atoms) on a line, with a nonlinear interaction between adjacent atoms and
certain boundary conditions; typically, the positions of the extreme atoms were
kept fixed and the number N of moving atoms was 64. The interaction potential
energy had the form V (r) = r2/2+αr3/3+βr4/4, with given constants α, β. For
α = β = 0 one has a linear system which, by a familiar argument, is equivalent
to a system of N uncoupled harmonic oscillators (normal modes) having certain
frequencies. The problem is then how many normal modes take part in the
energy sharing, which should occur in virtue of the nonlinear interaction. The
authors considered initial conditions in which the energy was given just to the
lowest normal mode (i.e. to the mode of lowest frequency), and the aim was to
observe, by numerical solutions of the equations of motion, the rate of the flow
of energy towards the modes of higher frequency, which was expected to occur in
order to establish the equipartition of energy among all the modes. They found
the unexpected result that, up to the times considered, the energy appeared to
be distributed just among a packet of normal modes of low frequency without
flowing to the high frequency modes. They also gave a figure reporting the mean
(in time average) energy versus frequency, which exhibited an exponential decay.

After this original work two more works had, in our opinion, a particularly
relevant role, namely that of Izrailev and Chirikov [18] of the year 1966, and
that of Bocchieri, Scotti and Loinger [19] of the year 1970. F.M. Izrailev and B.
Chirikov understood that there existed the problem of an energy threshold. By
analogy with the situations occurring in perturbation theory, in connection with
the existence of ordered motions in the sense of Kolmogorov, Arnold and Moser,
they conjectured that equipartition would be obtained if the initial energy E
was larger than a certain threshold energy Ec. Thus the result of Fermi, Pasta
and Ulam was explained as being due to the fact that only small energies, with
E < Ec, had been considered. The crucial point is then to understand how does
the critical energy Ec depend on the number N of degrees of freedom, because
in situations of physical interest N should be of the order of the Avogadro
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number. So one has to look at the specific critical energy εc = Ec/N (we are
using here the symbol ε for the specific energy, with no relation to the parameter
ε of the Lennard–Jones potential mentioned in the Introduction). The authors
had clearly in mind the idea that one might prove that εc → 0 as N → ∞ (at
least for initial excitations of the high frequency modes). Indeed, if this were true,
then in any physically meaningful system one would always have equipartition of
energy. Then everybody would be happy, because this would prove that classical
mechanics predicts a wrong result, as everyone has learned at school.

P. Bocchieri, A. Scotti and A. Loinger (working with a Lennard–Jones in-
teraction potential) gave a strong indication in the sense that, on the contrary,
the specific energy threshold εc should tend to a finite nonvanishing value in the
limit N → ∞. Shortly after such a work, in the paper [1] it was shown that, just
in situations in which according to Bocchieri, Scotti and Loinger one does not
have equipartition, the distribution of energy among the normal modes has a
Planck-like form, and even with an action of the order of magnitude of Planck’s
constant. Thus the adventure was started of looking for a deeper understanding
of the relations between classical and quantum mechanics.

After such “old” works, many other works followed (see for example [20] and
[21]), mostly with the intent of establishing whether εc → 0 as N → ∞, or not.
The theoretical framework also changed a lot. Indeed, initially reference was
made to KAM theory, while later the point of view of N.N. Nekhoroshev entered
the game [22]. The attention was thus shifted towards the idea that one might
always have equipartition as t → ∞, but with the possibility that the relaxation
time might increase exponentially fast as the specific energy decreases.

From this point of view, a recent relevant result was given, in our opinion, in
the paper [23]. Here it is confirmed that the results depend on the specific energy
ε, and actually in the following way. There exists a specific energy threshold εc

such that, if the energy is initially given to a small packet of modes of very
low frequency, the relaxation time to equilibrium (i.e. to equipartition) increases
as a power of 1/ε if ε > εc. Instead, if ε < εc, one has a first rapid (violent)
relaxation to a natural packet extending up to a maximal frequency ω(ε) � ε1/4,
while only on much larger time scales one would get equipartition. Moreover one
starts now having analytical results confirming such a scenario, exactly in terms
of the specific energy ε in the limit N → ∞; such analytical results also give
a precise analytical form for the spectrum corresponding to the natural packet
mentioned above.

In conclusion, it seems that below a certain critical specific energy εc one
deals with a metaequilibrium state, which is only later followed, on much longer
time scales, by a real Maxwell–Boltzmann equilibrium. Such a scenario has many
similarities with the one that is familiar for glasses and spin glasses, as was first
pointed out in the paper [24].
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4 The Landau–Teller Model of Molecular Collisions

We finally give a short review on the contribution of the internal degrees of
freedom to the specific heat of polyatomic molecules.

It was recalled above that we owe to Boltzmann the fundamental idea that
the contribution of the internal degrees of freedom to the specific heat would
manifest itself only on long time scales, in contrast to the degrees of freedom of
the center of mass (also called external degrees of freedom), which are known
to relax to equilibrium after a few collisions. We also recalled how Jeans gave
support to the point of view of Boltzmann, but later made a public retractation
after the work of Poincaré on the necessity of quantization. It is also of interest to
mention that the problem of the existence of long relaxation times was discussed
from the experimental point of view at the first Solvay Conference, by Nernst
and others. The opinion was there expressed that there was no evidence at all
for such longer relaxation times.

Actually such longer relaxation times were observed experimentally in the
year 1925, in studies of the dispersion (and anomalous diffusion) of sound in
diatomic gases [25], and it turned out that the times were even 6 orders of mag-
nitude larger than the mean collision time. In looking for an explanation of such
longer relaxation times, in a period in which the discussions of Boltzmann and
Jeans had been completely forgotten, a most relevant contribution was given
by Landau and Teller [26]. They considered an extremely simplified model cap-
turing the essence of the problem, namely the exchange of energy in a collision
between an atom and a linear spring, with an exponential interatomic potential.
For the energy exchange δE they actually found an expression of a form already
indicated by Jeans, namely δE � exp (−ωa/v), where ω is the frequency of the
spring, a the range of the potential and v the velocity of the impinging atom. A
relaxation time was then extracted from such a formula of the exchanged energy,
and the common opinion was formed that the theory fits rather well the experi-
mental data [27]. Serious doubts were however raised concerning the goodness of
the agreement, as is witnessed for example by the following quotation [28]: “It is
impossible to determine whether the choice of the potential parameters is phys-
ically significant, because all errors in the theory are compensated by adjustable
potential parameters”.

In any case, the common opinion is that the approach to equilibrium should
be controlled by a single relaxation time, say τL. Correspondingly, the law of
temporal approach should be exponential [29], of the type exp(−t/τL), as is
familiar in the Onsager theory. We are of the opinion that the situation is here,
however much more delicate. Indeed the Onsager theory is well suited for the
approach to equilibrium of systems presenting a completely chaotic dynamics,
while we are here confronted with the opposite situation, namely with systems
that are nearly integrable, for which no one was able up to now to produce a
statistical mechanics compatible with the dynamics (see however the papers [30],
where indications are given that the statistics might be given according to the
ideas of Einstein recalled above).
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Further results were recently given in the paper [31]. There it is shown that
the statistics induced by the dynamics in the Landau–Teller model of molecular
collisions is a rather complex one, because over very long times the processes of
the energy exchanges have many similarities to the well known Lévy processes,
which are dominated by the presence of rare, but highly conspicuous, jumps. For
an analogous situation in stellar dynamics see [32]. We are still working on the
Landau–Teller model, and we hope to be able to show that here too one meets
with two relaxation times, the shorter one leading to a state of metaequilibrium
characterized by a “nonclassical” statistics, and the second one leading to the
final Mazwell–Boltzmann equilibrium. This fact might be of interest for the
phenomenology of sound dispersion.

5 Conclusions

We have recalled above how strong was the impact of the theorem of Poincaré
concerning the necessity of quantization if the phenomenological law of Planck
is to be recovered. In fact, after that work essentially all attempts at providing a
classical understanding of Planck’s law along the lines indicated by Boltzmann
were abandoned. Peculiar exceptions were Einstein, who never proved convinced,
and Nernst, who introduced the dynamical interpretation for the zero–point
energy illustrated above.

Now, if one looks at the proof of Poincaré’s theorem, it seems evident that
the fundamental hypothesisis there made is that one should be dealing with a
real equilibrium (i.e., almost by definition, with the Maxwell–Boltzmann dis-
tribution). And in fact on several occasions Poincaré had stressed that, if one
recedes from equilibrium, one cannot have any thermodynamics at all: every-
thing would become fuzzy. It seems difficult to disagree. Let us quote Poincaré
himself [33]: “Jeans tried to reconcile things, by supposing that what we observe
is not a statistical equilibrium, but a kind of provisional equilibrium. It is diffi-
cult to take this point of view; his theory, being unable to foresee anything, is not
contradicted by experience, but leaves without explanation all known laws”.

But in fact it seems to us that there is a possibility of getting a thermody-
namics without a full equilibrium. The possibility is that one would be actually
dealing, not just with a nonequilibrium, but rather with a situation of metae-
quilibrium, as for example in the case of glasses. In such a case one can have
situations which apparently are indistinguishable from situations of a true equi-
librium, so that the critique of Poincaré could be overcome. This is exactly what
we are proposing, and is the reason why in this review we insisted in a particular
strong way on the relevance of being able to findi at least two time scales in the
problem of diatomic molecules (the existence ot two time scales in the Fermi–
Pasta–Ulam problem being, by now, almost granted): only on an extremely long
time scale would one get a true equilibrium, while on a first, short, time scale
one would reach a metastable state (as in stellar dynamics). In turn, the termo-
dynamics of the metastable state could not be described by the usual procedure
of the type of Onsager, beacuse the latter makes reference to a chaotic dynamics,
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as stressed by Bowen, Ruelle, Sinai and by Gallavotti. In the state of metasta-
bility one is instead dealing, from a dynamical point of view, with the other
extreme situation, namely with nearly integrable systems, and the suitable ther-
modynamics could perhaps be recovered along the lines suggested by Einstein
and by Nernst. So, in conclusion, our suggestion is that, according to classi-
cal mechanics, Planck’s law would describe a metaequilibrium state, at variance
with quantum mechanics which interprets it as referring to a true equilibrium.
It would be of a certain interest to ascertain whether the phenomenology might
prove to be consistent with the scenario of metaequilibrium.

Finally we add a comment about Poincaré. It would appear that, if we are
right in suggesting that the metaequilibrium scenario is a priori theoretically
consistent, then Poincaré would be wrong. Thus we were very glad in discovering
that Poincaré himself had some doubts about his attitude, essentially because he
had to admit that, after all, there are more things in heaven and earth than his
philosophy could imagine. Indeed, just a few lines after the destructive sentence
concernig Jeans quoted above, in connection with the quantization of energy
he added [33]: “Will discontinuity reign over the physical universe and will its
triumph be definitive? Or rather will it be recognised that such a discontinuity
is only an appearence and that it dissimulates a series of continuous processes?
The first person that saw a collision believed to be observing a discontinuous
phenomenon, although we know today that the person was actually seeing the
effect of very rapid changes of velocity, yet continuous ones”. It is true that
Poincaré also adds the skeptical conclusion: “To try to express today an opinion
about these problems would mean to be wasting one’s ink”. But at least we are
comforted in learning that he admitted that other scenarios (such as that of
Boltzmann, Einstein and Nernst, we would say) might be consistent.
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6. H. Poincaré, J. Phys. Th. Appl. 2, 5 (1912), in Oeuvres IX, 626–653
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cal Perturbation Theory in Nearly-Integrable Hamiltonian Systems, in Advances
in Nonlinear Dynamics and Stochastic Processes, ed. by R. Livi and A. Politi
(World Scientific, Singapore 1985)

18. F.M. Izrailev and B.V. Chirikov: Sov. Phys. Dokl. 11, 30 (1966)
19. P.Bocchieri, A.Scotti, B.Bearzi. A.Loinger: Phys. Rev. A 2, 2013 (1970)
20. R. Livi, M. Pettini, S. Ruffo and A. Vulpiani: J. Stat. Phys. 48, 539 (1987); D.

Escande, H. Kantz, R. Livi, S. Ruffo: J. Stat. Phys. 76, 605 (1994); D. Poggi, S.
Ruffo, H. Kantz: Phys. Rev. E 52, 307 (1995); J. De Luca, A.J. Lichtenberg, S.
Ruffo: Phys. Rev. E 60, 3781 (1999); L. Casetti, M. Cerruti–Sola, M. Modugno, G.
Pettini, M. Pettini, R. Gatto: Rivista Nuovo Cim. 22, 1 (1999); G. Parisi: Euro-
phys. Lett. 40, 357 (1997); A. Perronace, A. Tenenbaum: Phys. Rev. E 57 (1998)
D.L. Shepelyansky: Nonlinearity 10, 1331 (1997); P.R. Kramers, J.A. Biello, Y.
Lvov: Proceed. Fourth Int. Conf. on Dyn. Syst. and Diff. Eq., May 24–27, 2002,
Wilmington, N.C., Discrete Cont. Dyn. Systems (in print)

21. L. Galgani, A. Giorgilli, A. Martinoli, S. Vanzini: Physica D 59, 334 (1992)
22. G. Benettin, L. Galgani, A. Giorgilli: Nature 311, 444 (1984); L. Galgani: in Non-

Linear Evolution and Chaotic Phenomena, ed. by G. Gallavotti and P.F. Zweifel
NATO ASI Series B: Vol. 176 (Plenum Press, New York 1988); G. Benettin,
L. Galgani, A. Giorgilli: Comm. Math. Phys. 121, 557 (1989); G. Benettin, L.
Galgani, A. Giorgilli: Phys. Lett. A 120, 23 (1987)

23. L. Berchialla, L. Galgani, A. Giorgilli: Proceed. Fourth Int. Conf. on Dyn. Syst.
and Diff. Eq., May 24–27, 2002, Wilmington, N.C., Discrete Cont. Dyn. Systems
(in print)

24. A. Carati, L. Galgani: J. Stat, Phys. 94, 859 (1999)
25. Pierce: Proc. Amer. Acad. 60, 271 (1925); P.S.H. Henry, Nature 129, 200 (1932)
26. L.D. Landau, E. Teller: Phy. Z. Sowjet. 10, 34 (1936), in Collected Papers of L.D.

Landau, ed. by ter Haar (Pergamon Press, Oxford 1965), page 147
27. K.F. Herzfeld, T.A. Litovitz: Absorption and dispersion of ultrasonic waves (Aca-

demic Press, New York and London, 1959); H.O. Kneser: in Rendiconti della
Scuola Internazionale di Fisica “Enrico Fermi”: XXVII, Dispersion and absorp-
tion of sound by molecular processes (Academic Press, New York and London,
1963); D. Rapp, T. Kassal: Chem. Rev. 64, 61 (1969); A.B. Bhatia: Ultrasonic
Absorption (Clarendon Press, Oxford, 1967); J.D. Lambert: Vibrational and ro-
tational relaxation in gases (Clarendon Press, Oxford 1977); V.A. Krasilnikov,
Sound and ultrasound waves (Moscow 1960, and Israel Program for Scientific
Translations, Jerusalem 1963); H.O. Kneser: Schallabsorption und Dispersion in
Gases, in Handbuch der Physik XI–I (Springer–Verlag, Berlin 1961)

28. D. Rapp, T. Kassal: Chem. Rev. 64, 61 (1969)



Stellar Dynamics and Molecular Dynamics 55

29. O. Baldan, G. Benettin: J. Stat. Phys. 62, 201 (1991); G. Benettin, A. Carati,
P. Sempio: J. Stat. Phys. 73, 175 (1993); G. Benettin, A. Carati, G. Gallavotti:
Nonlinearity 10, 479 (1997); G. Benettin, P. Hjorth, P. Sempio: J. Stat. Phys. 94,
871 (1999)

30. A. Carati, L. Galgani: Phys. Rev. E 61, 4791 (2000); A.Carati, L. Galgani: Physica
A 280, 105 (2000); A. Carati, L. Galgani: in Chance in Physics, ed. by J. Bricmont
et al., Lecture Notes in Physics (Springer–Verlag, Berlin 2001)

31. A. Carati, L. Galgani, B. Pozzi: Phys. Rev. Lett. (2003, in print)
32. Dynamics and Thermodynamics of Systems with Long–Range Interactions, ed.

by T.Dauxois, S Ruffo, E. Arimondo. M. Wilkens, Lecture Notes in Physics
(Springer–Verlag, Berlin 2002)
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Waves Derived from Galactic Orbits.
Solitons and Breathers
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Athens, GR-10673, Greece

Abstract. We show how it is possible to define collections of non-interacting parti-
cles moving in the same potential so that solitons or breathers are formed. The dis-
placements of particles in this case obey a partial differential equation (PDE). Thus
it is possible to derive PDEs from a given Hamiltonian. We demonstrate the above
methodology using, as an example, a cubic potential and we derive a Korteweg-de
Vries equation.

We apply this methodology in galactic models and show that near resonances,
where “Third Integrals” of motion can be defined, the motion of stars can be described
in terms of solutions of a Sine-Gordon PDE. This equation admits kink or anti-kink
solitons solutions.

In particular in the case of the Inner Lindblad Resonance (ILR), applying the Third
Integral on a string of stars having as initial conditions the successive consequents of one
orbit on a Poincaré surface of section a Frenkel-Kontorova Hamiltonian is constructed.
The corresponding equations of motion are an infinite set of discrete Sine-Gordon
equations. This set of equations admits solutions that represent localized oscillations
on a grid that are known as Discrete Breathers. An analytic breather solution is derived
and compared with the corresponding numerical solution in the case of a perturbed
isochrone model.

The advantage of this methodology is that it takes into account the distribution
of phases of stars moving under the same value of the third integral. Because of their
nature, soliton solutions resist to dispersion and they can be a natural building block
to construct more stable non-linear density waves in galaxies.

1 Introduction

Bars or spiral arms are of the main features in the internal structure of galaxies.
Their stability is one of the most interesting problem in Galactic Dynamics.
Efforts to explain this stability, particularly in the case of the spiral arms, give
less stable structures than it is expected from the frequency of their observed
occurrence. In reasonable galactic models spiral arms can survive for no more
than several rotational periods (5 to 6).(See, for example, [19], [8], [17]).

As it is known, bars and spiral arms are maxima of density composed of
different stars at different times, that is, they are maxima of density waves
travelling along the azimuthal direction with pattern velocity which is different
in general than the mean angular velocity of stars. This mechanism implies some
phase correlations in the motion of stars in the galaxy. The main reason for which
bars or spiral arms can be destroyed is because of the dispersion of velocities
among stars that does not allow particular phase correlations to live for long.
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A well known mechanism able to suppress the consequences of dispersion
in dynamical systems composed of many particles is by the competition of the
dispersion with the nonlinearity of the dynamical system. Such a competition
is responsible, for example, for the robustness of solitons. If the spiral arms
are formed by density waves of solitary nature one expects to have increased
robustness compared with the linear waves. A special class of localized soliton-
like solutions are the breathers (see, for example, [15]).

Solitons are solutions of nonlinear integrable Partial Differential Equations
(PDEs). These solutions represent localized (not very extensive) waves travelling
in a medium and preserving their identity (their basic parameters) even after
interactions with other similar waves.

Nonlinearity appears in nature almost everywhere, while integrability is not
very common. In most cases, nonlinearity leads to non-integrable dynamical sys-
tems. Non-integrability is characterized by chaos, i.e. a sensitive dependence on
the initial conditions expressed by an exponential divergence of initially neigh-
boring orbits. Thus, the question arises: Is non-integrability compatible with
solitons?

Non-integrable systems contain both stable and unstable periodic orbits.
Chaos appears only around the unstable periodic orbits. Around the stable peri-
odic orbits the equations of motion are nearly integrable. It is worth looking for
the possibility that solutions of integrable PDEs can describe the basic features
of the behavior of dynamical system around stable periodic orbits.

The behavior of a dynamical system around stable periodic orbits is well
known. Due to the KAM theorem, a stable periodic orbit is surrounded by
invariant tori. Motion on these tori is regular, i.e. it resembles the motion in an
integrable system. The respective integral, that keeps the motion on a torus, is
the so called ‘third integral’ [5].

If the theory of solitons can describe the behavior of a dynamical system
in the areas of regular motion, then this theory must be directly related to
the theory of the third integral. Can we produce integrable PDEs and soliton
solutions from the third integral?

In this paper we show how this can be obtained. We first give, in Sect. 2,
an example to show how a sequence of non-interacting particles, moving in a
potential V (y), can be defined so that they form a soliton travelling along the
direction x on the x− y plane.

We apply the same methodology in the epicyclic theory of the motion of stars
in galactic potentials. Such potentials correspond to non-integrable Dynamical
Systems. The motion of stars in galaxies can be either regular or chaotic, depend-
ing on the particular location in their phase space. The level of chaos, however,
is low. We have found, for example, [20] that the Lyapunov Characteristic Num-
bers (LCN) of the orbits in galactic N-Body simulations is less than 0.1. This
corresponds to a Lyapunov time (the time necessary for chaos to be effective)
of the order more than 10 dynamical times. A black hole at the center of the
galaxies can enhance the level of chaos, but even in the case of a huge black hole
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(e.g. of mass 1% of the total mass of the galaxy), only a very small number of
stars describe orbits with LCN somehow larger than 0.1 [21].

In such an environment where order or weakly chaotic motion dominates it
is possible to define nonlinear waves as we see below. In Sect. 3 we summarize
the linear theory of the epicyclic motion and we show how a Klein-Gordon chain
can be defined in terms of the Poincaré Surface Of Section (PSOS). In Sect. 4
we discuss in brief the notion of galactic resonances and the physical meaning of
the ‘slow angle’. Sections 3 and 4 serve mainly in giving the definitions and in
understanding the role of various quantities in the problem. In Sect. 5 the non-
linear theory near the ILR in galactic models is discussed reviewing in brief the
paper [6]. In this paper Contopoulos, using post-epicyclic approximation terms,
derives a third integral Φ describing the motion of stars near the ILR. In Sect. 6
we show how a Sine-Gordon PDE and a corresponding Hamiltonian density can
be written, based on Φ. When Φ is applied for an infinite sequence of stars on the
Poincaré S.O.S, a Frenkel-Kontorova Hamiltonian [10] can be constructed. The
corresponding equations of motion are an infinite set of discrete Sine-Gordon
equations which admit discrete soliton or discrete breather solutions. Analytic
soliton or breather solutions are given in Sect. 7 and a comparison with a nu-
merical application is given in Sect. 8. A summary and discussion is given in
Sect. 9.

2 Solitons of Non-interacting Particles
Moving in a Given Potential

In this section we show that it is possible to construct solitons of non-interacting
particles that move in an 1-dimensional potential V (y) on the x-y plane.

Consider, for example, the Hamiltonian

H =
ẏ2

2c2
− cy2

2
+
y3

6
(1)

where c is a constant. For the value H = 0 of the Hamiltonian we get

dy

y
√

(1 − y/3c)
= ±c3/2dt. (2)

If we set
y =

3c
cosh2 aφ

(3)

we get

φ = φ0 ± c3/2

2a
t (4)

where φ0 is the value of φ at t = 0.
On the x-y plane we consider a continuous sequence of non-interacting par-

ticles with coordinates x = φ0 and y0 = 3c/ cosh2 ax and velocities ẋ = 0 and
ẏ0 = ±y0

√
1 − y0/3c). The sign (+) or (-) is chosen to be the sign of x. This
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sequence of particles forms a soliton travelling along the x direction with velocity
v = c3/2/2a = c, for 2a = c1/2. This soliton is described by the equation

y =
3c

cosh2
√

c
2 (x− ct)

(5)

and it can be derived as a particular solution

u = y(x− ct) = y(φ) (6)

of the well known Korteweg-de Vries PDE

∂u

∂t
+ u

∂u

∂x
+
∂3u

∂x3 = 0 (7)

Notice that, under the transformation (6) the above PDE can be integrated twice
to give

y2
φ

2
− c

y2

2
+
y3

6
= Ay +B (8)

where A and B are the constants of integrations. In the particular case of A = 0
at a fixed value of x we can replace yφ by yφ = −ẏ/c to find the Hamiltonian
(1).

3 Linear Epicyclic Waves in Galactic Models

The idea of forming waves with collections of non-interacting particles moving
in the same potential can be applied in galactic models. In this section we show
how this can be obtained in the simple case of the linear epicyclic motion.

In a rotating galactic model (either bared or spiral) with a plane of symmetry
(r, θ) in polar coordinates the motion of stars on this plane can be given by the
Hamiltonian

H =
1
2
(ṙ2 +

J2
0

r2
) −ΩsJ0 + V0(r) + V1(r, θ) = H0 + V1(r, θ) (9)

where J0 is the angular momentum of a star with respect to an inertial frame,
V0(r) is the axisymmetric component of the potential, V1(r, θ) is the perturba-
tion of the potential due either to the bar of the galaxy or to the spiral arms
that form a pattern rotating with angular velocity Ωs. H0 is the unperturbed
(axisymmetric) part of the Hamiltonian.

We define a cartesian coordinate system XY rotating with the pattern, i.e.
with angular velocity Ωs. The polar angle θ is measured in the frame XY from
the X-axis.

In the unperturbed potential V0(r) a star of H0 = h (the Jacobi integral)
and angular momentum J0 = Jc describes a circular orbit with radius rc such
that

h =
J2

c

2r2c
−ΩsJc + V0(rc) (10)
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where rc is the root of the equation

J2
c = r3c

dV0(rc)
drc

(11)

We define the radial action J1 as

J1 =
1
2π

∮
ṙdr (12)

and the azimuthal action J2 as J2 = Jc. If the unperturbed part H0 of the
Hamiltonian (9) is expanded up to the linear term in the radial action in Taylor
series around the radius rc, it becomes

H0 =
J2

2

2r2c
−ΩsJ2 + V0(rc) + ω1J1 (13)

where ω1 is the epicyclic frequency given by

ω2
1 = V ′′

0 (rc) +
3J2

2

r4c
(14)

(a prime denotes the derivative with respect to r).
In terms of the radial epicyclic coordinate x = r − rc and its conjugate

momentum p the radial action is

J1 =
1
2
(ω1x

2 +
p2

ω1
) (15)

The guiding center (i.e. the center of the epicycle) describes the circular orbit
rc with respect to an inertial frame with angular velocity

Ωc =
J2

r2c
(16)

while with respect to the rotating XY frame with angular velocity

ω2 = Ωc −Ωs (17)

The epicyclic angle θ1 and the azimuthal angle θ2 conjugate to J1 and J2
respectively, are determined by the equations

θ̇1 =
∂H0

∂J1
= ω1 , θ̇2 =

∂H0

∂J2
= ω2 (18)

from which we get
θ1 = ω1(t− ta) , θ2 = ω2t (19)

where ta is a constant.
The azimuthal angle θ2 gives the position of the guiding center of the epicycle.

We can define the origin of θ2 so that the guiding center crosses the X-axis at
t = 0.
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Fig. 1. (a) The phase space (x, p/ω1) of the epicyclic motion and the definition of the
epicyclic angle θ1. (b) The azimuthal angle θ2 gives the position of the guiding center.
The angle ξ is the value of θ2 when the star is a its apocenter.

The angle θ1 is the phase angle on the phase space (x, p/ω1), (Fig.1a). This
angle measures the phase of the star on its orbit. For example, if we define θ1
so that θ1 = 0 when the star is at its apocenter, then, when θ1 = π, the star is
at its pericenter. All other values of θ1 cover all the intermediate phases. Under
these definitions the constant ta in (19) is the time when the star reaches its
apocenter.

If ξ is the value of θ2 at the time when the star is at a particular phase of
its orbit, e.g. at its apocenter, then ξ = ω2ta(Fig.1b). The epicyclic angle θ1 is
written as

θ1 = ω1t− kξ (20)

where k = ω1
ω2

. The epicyclic coordinate x and its conjugate momentum p are
expressed in terms of the action J1 and the angle θ1 as

x =
√

2J1
ω1

cos θ1 =
√

2J1
ω1

cos (ω1t− kξ) , (21a)

p

ω1
= −

√
2J1
ω1

sin θ1 = −
√

2J1
ω1

sin (ω1t− kξ) . (21b)

The angle ξ can be used as an independent variable. Let us consider a continuous
sequence of stars with the same actions J1 and J2, uniformly distributed along
the values of ξ at a given time. All these stars follow the same orbit but with
different initial phases. According to (21a), their motions (in and out the circular
orbit rc) form a continuous sinusoidal wave, with wavenumber k, travelling along
the ξ-axis.

We can easily show that (21a) is a solution of the Klein-Gordon wave equation

xtt + ω2
2xξξ + 2ω2

1x = 0 (22)

The term ω2
2xξξ in this equation expresses a kind of phase interaction between

neighboring stars in the sequence.
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Consider the Poincaré surface of section (PSOS) of the orbit of a single star,
with actions J1 and J2, when for example θ2 = 0, that is, when the star crosses
the positive X-axis with a positive velocity component along the Y-axis (ẏ > 0).
If the star starts from its apocenter that is initially on the above PSOS then at
t = 0, θ1 = 0 and θ2 = 0. This means that the value of ξ for this star is ξ = 0.

For irrational values of k = ω1/ω2, the successive consequents of this orbit
on the PSOS, that occur in times tn = 2πn/ω2 with n = 0,±1,±2, ..., belong
to an invariant curve of action J1 on the plane (x, p/ω1). The rotation angle of
these consequents on the invariant curve is θ1 and takes the values

θ1n = ω1tn = 2πnk (23)

Consider now an infinite sequence of stars numbered as n = 0,±1,±2, ...
with the same actions J1, J2, having as initial conditions (at t = 0) the above
consequents. From (20) and (23) we get

ξn = −2πn (24)

Therefore the epicyclic angles of these stars as functions of time are

θ1n(t) = ω1t+ 2πnk (25)

and their equations (21a and 21b) become

xn =
√

2J1
ω1

cos (ω1t+ k2πn) , (26a)

pn

ω1
= −

√
2J1
ω1

sin (ω1t+ k2πn) . (26b)

Equation (26a) describes a discrete sinusoidal wave travelling along an 1-dimens-
ional grid of particles. This equation is a solution of the discrete set of Klein-
Gordon ordinary differential equations

ẍn +
ω2

2

4π2 (xn+1 + xn−1 − 2xn) + ω2xn = 0 (27)

where ω is given by the equation

ω2 = ω2
1(1 +

sin2 ω
ω2
π

( ω
ω2
π)2

) (28)

that tends to the value of ω =
√

2ω1 provided that the wavenumber k = ω
ω2

satisfies the condition k � 1.
It is remarkable that the second term in (27) represents a phase interaction

between neighboring stars in the sequence, as if this interaction were due to
repulsing elastic forces.

Thus, up to now, we have shown that using the invariance of the epicyclic
action J1 and the azimuthal action J2, we can define continuous epicyclic waves
satisfying a Klein-Gordon equation (22). Furthermore, in terms of the Poincaré
S.O.S., we can construct a Klein-Gordon chain of stars satisfying a corresponding
set of ordinary differential equations (27).

The above theory can be generalized in the non-linear case as it will be
described in Sect. 5.
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4 Resonances in the Unperturbed Potential.
The Inner Lindblad Resonance and the Slow Angle ψ

In a central potential V0(r) the apocenters of an orbit in general precess.
The radial frequency Ωr and the mean azimuthal frequency Ωa of an orbit are
defined as

Ωr =
2π
Tr
, Ωa =

φ

Tr
(29)

where Tr is the time from one apocenter to the next, called radial period, and φ
is the azimuthal angle between two successive apocenters.

In general this orbits is not closed, i.e. is not periodic. However, this orbit
closes, if it is observed in a frame rotating with angular velocity

Ωs =
φ− 2π
Tr

= Ωa −Ωr (30)

In other words it becomes periodic resembling in this case a Keplerian ellipse.
Such a closed orbit is called 1:1 resonant periodic orbit.

If the frame rotates with angular velocity

Ωs =
2φ− 2π

2Tr
= Ωa − Ωr

2
(31)

the orbit closes again but in this case it resembles an ellipse symmetric with
respect to the center. This is a 2:1 resonant periodic orbit. Equation (31) in
terms of the frequencies ω1 = Ωr and ω2 = Ωa −Ωs used in the previous section
can be written as

ω1 = 2ω2 (32)

(Notice that the mean azimuthal frequency Ωa is identical to the angular velocity
Ωc of the guiding center). Equation (32) expresses the well known Inner Lindblad
Resonance (ILR) in galaxies.

Consider a 2:1 resonant orbit, i.e. an orbit exactly at the ILR of a galaxy
in the XY plane in the unperturbed potential V0(r). The angle between the
major axis of the orbit and the X-axis is exactly the angle ξ, defined in the
previous section that determines the orientation of the apocenter. This orbit can
be analyzed in circular and epicyclic motion as in the previous section.

The slow angle ψ (introduced by Lynden-Bell [13]) is defined as

ψ = θ1 − 2θ2 (33)

Using (19) and (20) we get

ψ = (ω1 − 2ω2)t− 2ξ (34)

Since the orbit is exactly at the resonance (ω1 − 2ω2 = 0), we have

ψ = −2ξ (35)
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This means that the angle ψ for this orbit is constant and determines the ori-
entation of the major axis of the orbit. For other orbits, however, near to the
resonance, the angle ψ varies slowly with ψ̇ measuring the slow precession of
the major axis of the orbit. For this reason the angle ψ is called slow angle or
precession angle [13], [6], [14], [16].

On the PSOS as defined in the previous section, i.e. when θ2 = 0 the values of
the angle ψ coincide with the corresponding angle of θ1n of (23). Thus the angle
ψ on the PSOS (x, p/ω1) plays the role of the rotation angle on an invariant
curve.
5 Non-linear Epicyclic Motion

near the Inner Lindblad Resonance

Any perturbation V1(r, θ) imposed on the axisymmetric potential V0(r) can be
analyzed in Fourier modes [11] as

V1(r, θ1, θ2) = ε
∑
lm

Vlm(J1, J2) cos (lθ1 −mθ2) (36)

where ε is a small positive quantity and l,m are integers. For the orbits near the
ILR the most important term of the Fourier modes in the expansion (36) (i.e.
the mode that can pump more energy on such orbits than all other terms) is the
term with l = 1 and m = 2, namely, the term

εV12(J1, J2) cos (θ1 − 2θ2) = εV12(J1, J2) cosψ (37)

This is the resonant term in the ILR.
Using post epicyclic approximations Contopoulos [6] has shown that the

Hamiltonian (9) can be written in the form

H = h+ ω1I1 + ω2I2 + aI2
1 + 2bI1I2 + cI2

2 + ...+ V1(r, θ) (38)

where
I1 =

1
2π

∮
ṙdr = J1 (39)

is the radial action exactly the action J1 defined in Sect. 2.
The azimuthal action I2 in the Hamiltonian (38) is the excess from the an-

gular momentum of the circular orbit

I2 = J0 − Jc (40)

which is of the same order as J1. The frequencies ω1 and ω2 have the same
meaning as in Sect. 2.

Contopoulos [6] shows that near the ILR under proper canonical transforma-
tions the Hamiltonian (38) leads to an equivalent Hamiltonian H up to terms of
O(ε)

H = ω2J2 + cJ2
2 + Φ(J1, ψ) = 0 (41)
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where Φ(J1, ψ) is a third integral given by

Φ(J1, ψ) = γJ1 + αJ2
1 + ε1(

2J1

ω1
)1/2(J20 − 2J1) cosψ (42)

describing the epicyclic motion near the inner Lindblad resonance in post epicyclic
approximation terms. In these expressions ε1 is a small positive constant pro-
portional to ε in (37), γ is defined as

γ = ω1 − 2ω2 (43)

and α, c, J20 are constants.
The azimuthal action is J2 = I2 +2J1, the so called fast action. Its conjugate

fast angle ψ2 (equal to the azimuthal angle θ2)is ignorable in the Hamiltonian
(41). Therefore the azimuthal action J2 is a constant and the problem up to
terms of O(ε) is integrable.

The angle ψ is the slow angle given by (33). Its conjugate action is J1 that
can be written as

J1 =
1
2
(
p2

ω1
+ ω1x

2) . (44)

in terms of the epicyclic coordinate

x = (
2J1

ω1
)1/2 cosψ (45)

and its conjugate momentum

p

ω1
= −(

2J1

ω1
)1/2 sinψ . (46)

In terms of x and p the third integral (42) is a fourth order polynomial. A
periodic orbit of the system is located at an extreme value of Φ(J1, ψ). In other
words periodic orbits are found as the roots of algebraic system

Φx = 0, Φp = 0 (47)

where the index denotes the corresponding partial derivative. A root of this
system gives a stable or an unstable periodic orbit depending on the sign of the
quantity S = ΦxxΦpp − Φ2

xp (stable for S > 0).
For very small values of the perturbation parameter ε1 the system (47) has

only one real root giving a stable periodic orbit called x1, while for larger values
of ε1 three roots appear, by a saddle point bifurcation, giving two stable orbits
called x1 and x2 and one unstable orbit called x3 (Figs.1a,b in [6]).

6 A Sine-Gordon Equation

The equations of motion derived from H in (41) give

ψ̇2 = θ̇2 = w =
∂H
∂J2

= ω2 + 2cJ2 = constant (48)
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ψ̇ =
∂H
∂J1

=
∂Φ

∂J1
= γ + 2αJ1 + ε1A

′ cosψ (49)

J̇1 = −∂H
∂ψ

= −∂Φ

∂ψ
= ε1A(J1) sinψ (50)

where
A = (

2J1

ω1
)1/2(J20 − 2J1) (51)

and A′ is the derivative of A with respect to J1.
The second time derivative of ψ obeys the pendulum equation up to O(ε1)

terms, i.e.
ψ̈ − ω2

0 sinψ = 0 (52)

where
ω2

0 = ε1[2αA(J1) − (γ + 2αJ1)A′] (53)

A pendulum equation similar to (52) is known in Galactic Dynamics [16] derived
by alternative arguments. It expresses the possibility that an orbit precesses so
that its major axis either librates around a fixed direction at ψ = π, or rotates
around the center of the galaxy.

In the case when the three periodic orbits x1,x2,x3 appear, one can find both
librating or rotating orbits with a separatrix between them passing through the
unstable orbits x3.

If (52) is integrated once we get

ψ̇2

2
= −ω2

0cosψ + C (54)

where C is the integration constant. This constant is a measure of the value of
the third integral Φ(J1, ψ) at a given orbit. It can be easily shown that, up to
terms of O(ε),

γ2 + 4αΦ = 2C (55)

In the general case (for any value of C) (54) can be further integrated in term
of the Jacobian elliptic functions (e.g. see [1]). On the separatrix, ψ reaches the
value ψ = 0 with ψ̇ = 0, thus we get C = ω2

0 . For this value of C the solution of
(54) is

tan
ψ

4
= e±[ω0(t−t0)] (56)

where t0 is the time when ψ = π. On the PSOS, according to (45), this value of ψ
corresponds to the pericenter of the orbit, since x becomes minimum. The value
ψ = 0, on the other hand, corresponds to the apocenter of the orbit. Such an
orientation, of an orbit, on the separatrix, is approached as time goes to infinity.

Introducing the angle ξ as in the previous sections

ξ = wt0, k0 =
ω0

w
(57)
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tan
ψ

4
= e±(ω0t−k0ξ) (58)

We consider an continuous sequence of stars with the same constant C = ω2
0 (on

the separatrix) with characteristic phase angles φ = ω0t − k0ξ. Equation (58)
represents a kink or antikink soliton travelling along ξ and is a solution of the
Sine-Gordon wave equation

ψ̈ + w2ψξξ − 2ω2
0 sinψ = 0 (59)

The Lagrangian density function from which this equation can be derived is

L =
ψ̇2

2
+
w2ψ2

ξ

2
− 2ω2

0 cosψ (60)

and the corresponding Hamiltonian density

Φ∗ = ψ̇
∂L

∂ψ̇
− L =

ψ̇2

2
− w2ψ2

ξ

2
+ 2ω2

0 cosψ (61)

It is easy to show that this Hamiltonian density can be expressed up to O(ε) in
terms of the constant C in (54) or the third integral Φ in (42) as

Φ∗ = 2C − 1
2
(ψ̇2 + w2ψ2

ξ ) = γ2 + 4αΦ− 1
2
(ψ̇2 + w2ψ2

ξ ) (62)

If we consider an infinite number of stars starting at t = 0 with ξ = −2πn,
n = 0,±1,±2, ..., i.e. on the separatrix of the Poincaré S.O.S. as described in
the previous sections, (58) becomes

tan
ψn

4
= e±(ω0t+k02πn) (63)

Since k0 � 1 this is a solution of the discrete set of the ordinary Sine-Gordon
equations

ψ̈n +
w2

4π2 (ψn+1 + ψn−1 − 2ψn) − 2ω2
0 sinψn = 0 (64)

These equations can also be derived directly from a Fenkel-Kontorova Hamil-
tonian constructed in terms of the Hamiltonian density (61) by replacing the
partial derivative ψξ by its discrete equivalent and sum over all the n stars with
initial conditions on a single invariant curve of the Poincaré S.O.S. (same value
of Φ∗). Thus we get

ΦFK =
∑

n

Φ∗n =
∑

n

[
ψ̇2

n

2
− w2

8π2 (ψn+1 − ψn)2 + 2ω2
0 cosψn] (65)

If ψn is a periodic function with frequency ω and amplitude Xn, i.e. ψn =
Xn expωt, the dynamics of ψn in (64) can be studied through the following map
produced by direct substitution in (64)

Yn+1 = Yn +K sinXn + ΛXn ,

Xn+1 = Xn + Yn+1 , (66)

where K = 2(ω0T )2 and Λ = (ωT )2, with T = 2π/w.
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7 Analytic Solutions

If we make the transformation

φ = ω0t− k0ξ (67)

the Sine-Gordon equation (59) after a first integration becomes

ψ2
φ = 2[c+ 1 − 2 sin2 ψ + π

2
] (68)

where c is the integration constant and c ≥ −1. The solution of this equation is
given by the Jacobian sn-oidal Elliptic Functions. Namely, if

m = (c+ 1)/2 (69)

the solution is given by

cos
ψ

2
= m1/2sn(φ | m) (70)

This solution for ψ is a soliton travelling along ξ with velocity dξ/dt = k0/ω0 =
w. Using (33) and (48) the epicyclic coordinate x = xm cos θ1 can be expressed
as

x = xm cos (ψ + 2wt) = xm(cosψ cos 2wt− sinψ sin 2wt) (71)

where xm =
√

2J1/ω1 is the amplitude of the epicyclic coordinate x. This ampli-
tude varies since the action J1 is a function of time according to (50). Integrating
(50) we finally get

xm = x0 ± βm1/2
√

1 − sn2(φ | m) (72)

where x0 is the epicyclic coordinate for ψ = 0 and β measures the amplitude
of variations of xm around the value of x0. The proper choice of sign in (72)
depends on the sign of ψ̇ (minus for ψ̇ < 0).

From (70) we have
cosψ = 2msn2(φ | m) − 1 (73)

sinψ = 2m1/2sn(φ | m)
√

1 −msn2(φ | m) (74)

In the case of m � 1 we get the harmonic oscillation limit

cosψ = 2m1/2 sin2 φ− 1 (75)

sinψ = 2m1/2 sinφ(1 − m

2
sin2 φ) (76)

In the particular case of m = 1 the motion occurs on one of the two separatrices.
In this case the expressions (73) and (74) become

cosψ = 1 − 2
cosh2 φ

, sinψ =
2 tanhφ
coshφ

. (77)
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Let Rg be the radius of the circle described by the guiding center. The radius
R3 to a star describing the unstable periodic orbit x3 can be approximated by

R3 = Rg + x0 cos 2wt (78)

The radius to any star describing an epicyclic motion with the same guiding
center can be written as

R = Rg + xm cos θ1 (79)

For the stars moving on the separatrix surrounding the periodic orbits x2 (where
ψ̇ < 0) the correct sign in (72) is (-). In this case the difference ∆R = R−R3 =
xm cos θ1 − x0 cos 2wt can be written as

∆R = [−2(x0 − β

coshφ
)

1
cosh2 φ

− β

coshφ
] cos 2wt

+2(x0 − β

coshφ
)
tanhφ
coshφ

sin 2wt (80)

The r.h.s in (80) represents a breather (composed of two simpler superposed
breathers). This is a breather of a continuous sequence of stars along ξ. For the
discrete sequence {n} of stars the angle φ is

φ = ω0t+ k02πn (81)

In this case we have a discrete breather on an one-dimensional grid of stars,
similar to breathers found in other branches of Physics. Studies on discrete
breathers is currently a very active field of research (see e.g. [18], [22], [2], [15], [9],
[3], [4], [33], [23], see also Bountis and Bergamin in this volume). One-dimensional
discrete breathers are defined as common frequency oscillations of a not very
large number of particles localized in a region of an infinite grid of interacting
particles. The localization is due to the fact that the amplitudes of the oscillations
decrease exponentially with the distance from a given point of the grid due to
the nonlinearity of the potential. Discrete breathers can be either stationary,
remaining at the same region of the grid or they can travel along the grid. In
the present case the breather travels along −n with a phase velocity dξ/dt =
−2π∆n/∆t = ω0/k0 = w.

8 A Numerical Application
and Comparison with the Analytic Results

We present below a comparison of the above solution (80) with the numeri-
cal calculations in a particular galactic model. In this model the axisymmetric
component of the potential is taken to be the well known isochrone model

V0(r) = − 1
1 +

√
1 + r2

, (82)
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on which a bar-like perturbation

V1(r, θ) = εr1/2(16 − r) cos 2θ (83)

is superposed. This model has been used in [7] in studying galactic orbits in
week and strong bars. The adopted values of ε and Ωs are ε = 0.00001 and
Ωs = 0.05. For a value of the Jacobi constant h = −0.28, motion occurs near
the ILR. The three periodic orbits x1, x2 (stable) and x3 (unstable) on the XY
plane are shown in Fig. 2, while the corresponding Poincaré S.O.S. (X, Ẋ) is
shown in Fig.3. In this figure the axes are X = Rg + x and Ẋ = ẋ.

This system is non-integrable. For the above choice of parameters, chaos
in the region of the unstable orbit x3 at (X3 ≈ 2.33, Ẋ = 0) is very small,
so that it can be neglected. The stable periodic orbits x1 and x2 are at the
centers of the two islands at (X ≈ 1.03, Ẋ = 0) and (X ≈ 1.82, Ẋ = 0),
respectively. These islands are limited by two separatrices. (In fact, what we call
a separatrix here, is a very thin homoclinic tangle formed by the unstable and
the stable asymptotic curves emanating from the unstable periodic orbit x3).
The dots in Fig.3 correspond to the successive consequents of a single orbit on
each separatrix.

Let us focus on the points of one separatrix only, for example, the sep-
aratrix surrounding the periodic orbit x2. We number these consequents as
n = 0,±1,±2, ... composing the sequence {n} of stars. The consequent n = 0 is
at Ẋ ≈ 0 and Xmin = 1.27. Positive or negative n means a consequent in the
future or in the past, respectively, relative to the consequent at n = 0.

Fig. 2. The three periodic orbits x1,x2 (stable) and x3 (unstable) on the XY plane.
The chain of stars forming the breather of Fig.4 is shown at several snapshots.
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Fig. 3. The Poincaré surface of section in the model of (82),(83) for h = −0.28. The
three periodic orbits x1,x2, and x3 are at X = 1.03, X = 1.82, X = 2.33, respectively,
with Ẋ = 0. Dots represent the successive consequents of an orbit starting on each
separatrix. The dots on the separatrix surrounding x2 are the initial conditions of the
chain of stars forming the breather shown in Fig.4.

We run simultaneously the orbits of a chain of 2nmax + 1 = 145 stars with
initial conditions the above consequents and we calculated

∆R(n, t) = Rn(t) −Rx3(t) (84)

where Rn(t) is the radial distance from the center at time t of the star n and
Rx3(t) is the same as Rn(t), but of a star moving exactly on the unstable periodic
orbit x3.

In Fig. 4 the line with dots gives ∆R(n, t) as a function of n at four snapshots
at times t = 0, T/8, 2T/8, 3T/8, where T is the azimuthal period corresponding
to the frequency w. The thin solid line gives at the same times ∆R as a function
of ξ evaluated from (80). The values of x0 and β are taken from the data of
Fig. 3. They are x0 = 0.65 and β = 0.24. The agreement between the numerical
∆R(n, t) and the analytic∆R is quite good. The small differences are mainly due
to the approximate representation of the orbit x3 by the equation (78) but also
to the fact that the analytic solution contains only O(ε) terms. Similar results
are found if we consider the other separatrix of Fig.3.

We see therefore that proper chains of stars can form breathers travelling
along the chain with a speed w equal to the angular velocity of the guiding
center. The chain of stars used in the numerical breather of Fig.4 is shown in
real space in Fig.2 at t = 0, T/8, 2T/8, 3T/8, T/2. The stars of this chain lie
initially (t = 0) on a straight line along the X axis. The chain evolves to a loop
at T/4 and forms again an almost straight line along X at T/2 and so on, being
successively inside or outside the unstable periodic orbit x3.
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Fig. 4. Dots give the breather formed by a chain of stars with initial conditions on the
separatrix surrounding the periodic orbit x2. The thin solid line represents the analytic
solution in (80).
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If the sequence {n} of stars is defined with initial conditions on any invariant
curve of Fig.3, then sn-oidal solitons are formed according to the solution (70)
travelling along the chain of stars with velocity w. In other words stars pass
through a constant phase φ of the soliton with speed w. This means that a
constant phase φ is stationary with respect to the X-Y frame. This is a very
convenient property to define nonlinear density waves or solitary density waves
in galaxies.

9 Summary and Discussion

We have shown how it is possible to write PDEs governing the motion of collec-
tions of non-interacting particles moving in a given potential. In other words, we
have shown how one can pass from the theory of orbits to the theory of nonlinear
waves.

In particular, we have shown that, on the basis of the third integral, it is
possible to write PDEs, governing the motion of stars in galactic models. The
fact that the Third Integral can be directly related to the theory of solitons joins
different points of view and bridges two different fields of experience.

In the case of the Inner Lindblad resonances a Sine-Gordon PDE is derived
for the slow angle of precession of the orbits. The corresponding Lagrangian or
Hamiltonian densities are given.

Using the successive consequents of an orbit on the PSOS, we can define a
Klein-Gordon chain of stars, that is, an one-dimensional grid obeying a Frenkel-
Kontorova Hamiltonian.

Breathers can be constructed in galactic models for sets of stars on the sep-
aratrices of unstable periodic orbits. An analytic breather solution is obtained
near the ILR which is in good agreement with the corresponding numerical re-
sults.

This analysis opens the possibility that collections of orbits forming solitons
and breathers can be superimposed, instead of single orbits, to construct bars
or spiral arms in galaxies. This approach takes into account the fact that many
stars in a galaxy can move in phase correlated orbits, consistent to the structure
of phase space. Such collections of stars resist to dispersion as long as the Third
Integral is conserved. This feature is important for nonlinear density waves,
which can form longer living patterns. The surface of section is only used as a
tool to realize the phase correlations of orbits. Notice, that the distribution of
stars along an invariant curve can be far from uniform, seriously deformed by the
nonlinear effects. This is taken into account as well. In this aspect, the solutions
of solitons and breathers, we have found, are more natural building blocks of
nonlinear density waves.
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Discrete Breathers in Nonlinear Lattices:
A Review and Recent Results

Tassos Bountis and Jeroen M. Bergamin

Department of Mathematics and Center for Research and Applications of Nonlinear
Systems, University of Patras, 26500 Patras, Greece

Abstract. Localization phenomena in systems of many (often infinite) degrees of free-
dom have attracted attention in solid state physics, nonlinear optics, superconductivity
and quantum mechanics. The type of localization we are concerned with here is dy-
namic and refers to oscillations occurring not because of the presence of some defect,
but due to the interaction between nonlinearity and resonances. In particular, we shall
describe an entity called discrete breathers, which represent localized periodic oscilla-
tions in nonlinear lattices. As suggested by other authors in this volume, this type of
behavior may be observed in density fluctuations of stars rotating in a galaxy in the
discrete or continuum approximation. Since the reader may not be too familiar with
these concepts, we have chosen first to review the history of discrete breathers in the
second half of last century and then present an account of our recent results on the
efficient computation of breathers in multi-dimensional lattices using homoclinic or-
bits. This allows us to make a much more detailed study and classification of discrete
breathers than had previously been possible, as well as accurately follow their existence
and stability properties as certain physical parameters of the problem are varied.

1 The History of Energy Localization

In 1955, Fermi, Pasta and Ulam (FPU) [1] presented the first systematic study
of the energy properties of a chain of 32 identical particles, interacting through
linear and nonlinear forces and attached to fixed boundaries, according to the
equations of motion:

ün = (un+1 − 2un + un−1) + α
(
(un+1 − un)2 − (un − un−1)

2
)

, n = 1, ..., 31

u̇0 = u̇32 = 0
u0 = u32 = 0 , (1)

where un = un(t) represents each particle’s displacement from equilibrium and
dots denote differentiation with respect to time t. Using the newly developed
computers of the Los Alamos Laboratories in the USA, they integrated (1),
starting with the initial condition un = sin

(
πn
32

)
, and observed a remarkable

near-recurrence of the solutions to the initial condition after relatively short
time periods (see Fig. 1 below).

All expectations of the theory of statistical mechanics before these experi-
ments predicted that higher order modes of oscillation (i.e. states with un =
sin

(
(2k + 1) πn

32

)
, k ∈ N larger than one) would equally share the energy of
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Fig. 1. Time-integration of the FPU system until just after the first approximate re-
currence of the initial state. Shown here is how the energy Ek = 1

2

(
ȧ2

k + 2a2
k sin2 (

kπ
2N

))

is divided over the first five modes ak =
∑N

i=1 xi sin
(

ikπ
N

)
. The numbers in the figure

indicate the wave-number k

the system, thus achieving finally a situation of thermodynamic equilibrium. Of
course, the Poincaré recurrence theorem dictated that the initial state would
again emerge, but after much longer times than the recurrences observed by
Fermi, Pasta and Ulam. It was therefore understandable that this discovery cre-
ated a great excitement within the scientific community of the period.

In 1965, attempting to explain the results of the FPU experiment, Zabusky
and Kruskal [2] derived the Korteweg–De Vries (KdV) equation of shallow water
waves in the long wavelength and small amplitude approximation,

qτ + qqx + δ2qxxx = 0 δ2 � 1 , (2)

as a continuum limit of the FPU system (1). They observed that solitary traveling
wave solutions, now known as solitons, exist, whose interaction properties result
in analogous recurrences of initial states, see Fig. 2. In taking their continuum
limit, however, Zabusky and Kruskal overlooked an important aspect of the FPU
chain: the discrete nature of the system.

In 1969, Ovchinnikov [3] showed – in a study of coupled nonlinear oscilla-
tors modeling finite-sized molecules – how discreteness in combination with an
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Fig. 2. The evolution of the initial state u = cos (πx) in the Korteweg–de Vries equa-
tion, at the times t = 0 (dotted line) t = 1/π (dashed line). At an intermediate stage
(t = 3.6/π, solid line), the solitons are maximally separated, while at t ≈ 30.4/π the
initial state is nearly recovered

intrinsic nonlinearity of the system can cause energy localization. Due to this
combination, resonances between neighboring oscillators are avoided when cer-
tain frequency bands (the so-called phonon bands) are outside the spectrum of
vibrations of the system (see Fig. 3). Thus, the recurrence phenomena in the
FPU experiments can be explained as the result of limited energy transport
between Fourier modes, caused by discreteness and non-resonance effects.

1.1 The Discovery of Discrete Breathers

Twenty years later (1988), the subject of localized oscillations in nonlinear lat-
tices was revived in a paper by Sievers and Takeno [4], in which they used
analytical arguments to show that energy localization occurs generically in FPU
systems of infinitely many particles in one dimension, obeying the equations:

ün = (un+1 − 2un + un−1) + α
(
(un+1 − un)2 − (un − un−1)

2
)

, (3)

cf. (1), for −∞ < n < ∞.
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Fig. 3. Local energies E1 (t) (solid line) and E2 (t) (dashed line) of the two coupled
nonlinear oscillators considered by Ovchinnikov [3], showing how energy transfer is
impeded by discreteness and nonlinearity. Left: Complete energy transfer when the
first oscillator has initial amplitude a = 2.0 (E1 (0) = 2.4). Right: Incomplete energy
transfer when the first oscillator has initial amplitude a = 2.5 (E1 (0) ≈ 4.1)

Combining their perturbative analysis with numerical experiments, they de-
monstrated that a new type of solution, the so-called discrete breathers exist as
oscillations which are both time-periodic and spatially localized. In their simplest
form, such solutions can exhibit significant oscillations only of the middle (n = 0)
and nearby (n = −1, +1) particles. However, a great many patterns are possible
(the so-called multibreathers) in which several particles around the middle one
oscillate with large amplitudes, as shown here in Fig. 4. How can one determine
all the possible shapes? Which of them are stable under small perturbations?
These are the kind of questions that we set out to answer in our research.

Besides the FPU system, the existence of these localized oscillations was soon
verified numerically by other research groups on a variety of lattices, including
the Klein-Gordon (KG) system

ün = − V ′ (un) + α (un+1 − 2un + un−1) , (4)

where V is an on-site potential and α is a parameter indicating the coupling
strength.

It was not, however, until 1994, that a mathematical proof of the existence
of discrete breathers was published by MacKay and Aubry [5] in the case of
one-dimensional lattices of the type (4). Under the general assumptions of non-
linearity and non-resonance, such chains of interacting oscillators were rigorously
shown to possess discrete breather solutions for small enough values of the cou-
pling parameter α > 0, as a continuation of their obvious existence at α = 0.

Section 2 below contains the main part of our contribution to the field of
discrete breathers. We have found that a very convenient way to construct them
and study their stability properties, away from the α = 0 limit, is through the
“geometry” of the homoclinic solutions of nonlinear recurrence relations [6].
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Fig. 4. Several breathers of an FPU lattice of the form (3) with cubic (rather than
quadratic) interactions, obtained by starting a Newton-Raphson search using homo-
clinic orbits of a map of the form (6) as an initial guess

2 The Connection with Homoclinic Dynamics

Focusing on the property of spatial localization, Flach was the first to show that
discrete breathers in simple one-dimensional chains can be actually represented
by homoclinic orbits in the Fourier amplitude space of time-periodic functions
[7]. Indeed, inserting a Fourier series

un (t) =
∞∑

k=∞
An (k) exp (ikωt) (5)

into the equations of motion of either the FPU (3) or KG (4) lattice and setting
the amplitudes of terms with the same frequency equal to zero, leads to the
system of equations

− k2ω2An (k) = 〈−V ′ (un) + W ′ (un+1 − un) − W ′ (un − un−1) , exp (ikωt)〉
∀k, n ∈ Z .

This is an infinite-dimensional mapping of the Fourier coefficients An (k)
with the brackets 〈., .〉 indicating a properly normalized inner product. Time-
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periodicity is ensured by the Fourier basis functions exp (ikωt). Spatial local-
ization requires that An (k) → 0 exponentially as n → ±∞. Hence a discrete
breather is a homoclinic orbit in the space of Fourier coefficients, i.e. a dou-
bly infinite sequence of points beginning at 0 for n → −∞ and ending at 0
for n → +∞. In fact, keeping only the Fourier term (k = 1) with the largest
amplitude reduces, in some cases, the above system to a simple 2-dimensional
mapping

an+1 = g (an, an−1) , (6)

whose invariant manifolds of the saddle fixed point at the origin can be easily
plotted, as in Fig. 5.
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Fig. 5. The stable (dashed line) and unstable (solid line) manifolds of the fixed point
at (0, 0) of a 2-dimensional map of the form (6), with xn = an and yn = an+1. The
manifolds are clearly seen to intersect at infinitely many points, hence a wealth of
homoclinic orbits exists
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2.1 How to Construct Homoclinic Orbits

Realizing the importance of homoclinic orbits to the subject of discrete breathers,
we have been able to develop in [8] efficient numerical methods for locating
homoclinic orbits of invertible maps of arbitrary but finite dimension. To this
end, we found it particularly useful to exploit symmetry properties of the maps
and understand the geometry of the invariant manifolds near the origin, which
is always a fixed point of the mappings of the saddle type.

To see how this is done, let us consider a general first order map (or recurrence
relation)

xn = f (xn) , xn ∈ R
d , (7)

with d a positive integer. Recall that homoclinic orbits are solutions for which
xn → 0 as n → ±∞ and concentrate on all orbits satisfying a symmetry condi-
tion of the form

xn = Mx−n , (8)

where M is a d × d-matrix with constant entries and det (M) �= 0. Observe that
if an orbit obeys such a symmetry and xn → 0 as n → −∞, then it is also
true that xn → 0 as n → ∞. Hence, any orbit which obeys this symmetry and
satisfies xn → 0 as n → −∞ is a homoclinic orbit.

To obtain such an orbit, we first need to specify numerically its asymptotic
behavior as n → −∞. In other words, it has to be on the unstable manifold
of x = 0. Furthermore, a necessary requirement for a homoclinic orbit to exist
is that the origin be a saddle fixed point of the map. Then it is known that
the unstable manifold of the origin is well approximated in its vicinity by the
unstable Euclidean eigenspace of the linearized equations, which is tangent to
the nonlinear manifold and has the same number of dimensions.

Now, the dimension of the linear unstable eigenspace equals the number
of coordinates necessary to determine a point x−N , N 	 1 uniquely. Thus, by
choosing this point to be on the linear unstable manifold very close to the origin,
it follows that it will also be approximately on the corresponding nonlinear
manifold. Thus, when mapped forward N + 1 times, we can test whether it
satisfies the above symmetry relation (8). By this approach, locating symmetric
homoclinic orbits becomes a search for solutions of the system{

x1 − Mx−1 = 0
x0 − Mx0 = 0 , (9)

since, given x−N , the values of x1, x0 and x−1 are uniquely obtained by direct
iteration of the map (7).

In the case of an invertible map we can use this method to find also all asym-
metric homoclinic orbits, i.e. those which do not obey the symmetry condition
(9). This can be done by introducing the new “sum” and “difference” variables{

vn = xn + x−n

wn = xn − x−n
,
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which always possess the symmetry{
vn = v−n

wn = −w−n
. (10)

In this way, we can apply again the above strategy and look for symmetric
homoclinic orbits of a new map (of double the dimension of the original f)
described by the equations

F :
{

vn+1 = f
(

vn+wn

2

)
+ f−1

(
vn−wn

2

)
wn+1 = f

(
vn+wn

2

) − f−1
(

vn−wn

2

) , (11)

yielding homoclinic orbits xn of the original map f , (7), that are not them-
selves necessarily symmetric. On the other hand, each homoclinic orbit of f is
a symmetric homoclinic orbit of the new map F . Therefore, by determining all
symmetric homoclinic orbits of F , we find all homoclinic orbits of f . Following
this approach, we have also been able to classify all possible homoclinic orbits
by assigning to them symbolic sequences in a systematic way, according to their
complexity (see [8, 9] for more details and Fig. 6 as an example of the results of
these papers).

Thus, we now come to our second major contribution on this topic, described
in Sect. 3 below. This concerns a new approach to the computation of discrete
breathers, which can be efficiently applied to lattices of more than one spatial
dimension and systems with vector valued variables assigned to each lattice site.
The main idea is to write a breather solution as a product of a space-dependent
and a time-dependent part and reduce the problem to finding the homoclinic
orbits of a 2 dimensional map, under the constraint that the given ODEs possess
simple periodic oscillations of a well-defined type and of specified period.

3 A New Approach Is Introduced

As was mentioned above, it is possible to write down a map in Fourier amplitude
space linking discrete breathers with homoclinic orbits. This map can be reduced
to a finite-dimensional recurrence relation, by neglecting Fourier components
with a wave number k larger than some cutoff value kmax. Then, one can use
the methods of our papers [8, 9] to approximate discrete breather solutions by
finding all the homoclinic solutions of these recurrence relations.

Recently, however, this problem has been re-examined from a different per-
spective: In 2002, inspired by the work of other authors like Flach [10] and
Kivshar [11], Tsironis [12] suggested a new way to approximately separate ampli-
tude from time-dependence, yielding in some cases ODEs with known solutions
(for example elliptic functions) while keeping the dimension of the recurrence
relation as low as possible. This led to an improved accuracy of the calculations
and provided analytical expressions of discrete breathers for a special class of
FPU and KG systems.

In a very recent paper [13], Bergamin extended Tsironis’ work by develop-
ing a numerical procedure for which the time-dependent functions need not be
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Fig. 6. Several homoclinic orbits of the map F , (11) determined by a zero-search of
the system of equations v1 − v−1 = 0 and w0 = 0, related by vn = xn + x−n and
wn = xn −x−n. Shown here are vn (dashed), wn (dotted) and xn (solid). Also indicated
is the symbolic name of the orbit, assigned by the procedure given in [8]

known analytically. In this way, a much wider class of nonlinear lattices can
now be treated involving scalar or vector valued variables in one or more spatial
dimensions.

In particular, the approximation proposed by Tsironis can be more precisely
formulated as follows{

un+1 (t) − un (t) ≈ (an+1 − an) Tn (t)
un−1 (t) − un (t) ≈ (an−1 − an) Tn (t) , (12)

where an denotes the time-independent amplitude of un (t) and Tn (t) is its time-
dependence, defined by Tn (0) = 1 and Ṫn (0) = 0.

Note now, that all FPU and KG systems are derived from a potential function
of the form

U =
∞∑

n=−∞
V (un) + W (un+1 − un) .

Using the approximation (12), the equations of motion

ün = −V ′ (un) + W ′ (un+1 − un) − W ′ (un − un−1)
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are transformed into

anT̈n = −V ′ (anTn) + W ′ ((an+1 − an) Tn) − W ′ ((an − an−1) Tn) . (13)

This is an ordinary differential equation (ODE) for Tn (t) which can, in principle,
be solved since the initial conditions are known.

Of course, an analytical solution of ODE (13) is in general very difficult to
obtain. However, since we are primarily interested in the amplitudes an, what
we ultimately need to do is develop a numerical procedure to find a recurrence
relation linking an, an+1 and an−1 without having to solve the ODE beforehand.

Let us observe first, that the knowledge of an, an+1 and an−1 permits us
to solve the above ODE numerically. Under mild conditions, solutions Tn (t)
can thus be obtained, which are time-periodic, while for a discrete breather all
functions Tn (t) have the same period. Choosing a specific value for this period,
allows us to invert the process and determine an+1 as a function of an and an−1,
similar to (6). In the same way, we also determine an−1 as a function of an and
an+1. Thus, a two-dimensional invertible map for the an has been constructed,
ensuring that all oscillators have the same frequency.

As is explicitly shown in [13, 14], on a variety of examples, the homoclinic or-
bits of this map provide highly accurate approximations to the discrete breather
solutions with the given period and the initial state un (0) = an, u̇n (0) = 0.
In fact, we can now apply this approach to more complicated potentials and
higher dimensional lattices, as we demostrate in Fig. 7, where we compute a
discrete breather solution of a 2-dimensional lattice, with indices n, m in the x, y
directions and dependent variable un,m (t).

Having thus discovered new and efficient ways of calculating discrete breathers
in a wide class of nonlinear lattices, we now turn to the study of their stabil-
ity, control and continuation properties in parameter space. More specifically,
we shall show that it is possible to use our methods to extend the domain of
existence of breathers to parameter ranges that cannot easily reached by other
more standard continuation techniques.

3.1 Stability and Existence of Discrete Breathers Using Control

So far, we have seen that transforming nonlinear lattice equations to low-dimen-
sional maps and using numerical methods to compute their homoclinic orbits
provides an efficient tool for approximating discrete breathers in any (finite)
dimension and classifying them in a systematic way. This clears the path for an
investigation of important properties of large numbers of discrete breathers of
increasing complexity. One such property, which is relevant to many applications
and requires that a solution be known to great accuracy, is stability in time.

In our recent work [15], the accurate knowledge of a discrete breather solution
was used in a rather uncommon way to study stability properties: As is well
known, in Physics, Electronics and Engineering, a familiar task is to try to
influence the behavior of a system, by applying control methods. By control
we mean here the addition of an external force to the system which allows us
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Fig. 7. A 2-dimensional breather obtained by the method described in the text, for
equations of motion of the KG type where the particles at each lattice site n, m experi-
ence harmonic interactions with its 4 nearest neighbors and a quartic on-site potential.

to influence its dynamics. In particular, the objective of our control will be to
change the stability type of a discrete breather solution of the controlled system,
compared with the uncontrolled one.

The system is altered in such a way that the solution itself does not change.
In other words, in the controlled system the solution is exactly the same as in the
uncontrolled and for this reason the control is of the feedback type. If a solution
is unstable in the uncontrolled system, the extra terms added to the equations
in the controlled case can cause the solution to become stable and vice versa.
The system we have studied [15] is based on the KG equations of motion written
as

ün = −V ′ (un) + α (un+1 − 2un + un−1) + L
d

dt
(ûn − un) , (14)

where ûn is the known discrete breather solution of the equations when L = 0.
The parameter L indicates how strongly the control term influences the KG
system. Thus, for any value of L, un = ûn is clearly seen to be a solution of both
the controlled as well as the uncontrolled lattice equations. Clearly, for L > 0, the
L d

dtun term introduces dissipation, while the L d
dt ûn represents periodic forcing.

It is therefore reasonable to investigate whether, by increasing L, the dissipative
part of the process will force the system to converge in time to a stable solution.
If this solution is the original ûn, the latter is stable. If this does not happen,
the original solution is unstable. In [14, 17] the following proposition is proved,
though in a slightly more general formulation:
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Proposition 1. Let un = ûn be a periodic solution of the lattice equations

ün = −V ′ (un) + α (un+1 − 2un + un−1) .

Then there exists an L > 0 such that un = ûn is an asymptotically stable solution
of the modified (controlled) system

ün = −V ′ (un) + α (un+1 − 2un + un−1) + L
d

dt
(ûn − un) .

This result clearly implies that, by increasing L, it is possible to stabilize the
original solution, independent of its stability in the uncontrolled situation. Let
us demonstrate this by taking the breather of Fig. 8, which is unstable at L = 0,
substitute its (known) form ûn (t) in the above equations and increase the value
of L. As we see in Fig. 5, it is quite easy to stabilize it at L = 1.17, since increasing
the value of L gradually brings all eigenvalues of the monodromy matrix of the
solution inside the unit circle.

The above Proposition has an additional significant advantage: It gives us
the opportunity to address the question of the existence of discrete breathers
in ranges of the coupling parameter α where other techniques do not apply. In
order to do this, it is important to recall first how this question was originally
answered (though partially) in the existence proof of MacKay and Aubry, based
on the notion of the so - called anti-continuum limit α = 0 [5].

Let us observe that the KG equations of motion

ẍi = − V ′ (xi) + α (xi+1 − 2xi + xi−1)
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Fig. 8. A breather shape un (t) = ûn (t) of the system (14) which is unstable for L = 0
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Fig. 9. Increasing the control parameter L from L = 0 in the system (14) with the
initial shape given in Fig. 8 moves the eigenvalues of the orbit’s monodromy matrix
inside the unit circle. Initially, some eigenvalues are outside the unit circle, but even-
tually, for L > 1.17, all eigenvalues attain magnitudes less than one, thus achieving
stability and control

describe a system of uncoupled oscillators for α = 0. Obviously, in that case, any
initial condition, where only a finite number of oscillators have a non-zero ampli-
tude, is a discrete breather solution. In their celebrated paper of 1994, MacKay
and Aubry prove that, under the conditions of nonresonance with the phonon
band and nonlinearity of the function V ′ (x), this solution can be continued to
the regime where α > 0.

According to their approach, however, continuation for α > 0 is possible,
only as long as the eigenvalues of the Floquet matrix of the solution do not
cross the value +1. This means that the typical occurrence of a bifurcation,
through which the breather becomes unstable, prevents MacKay and Aubry’s
continuation method from following the breather beyond that value of α. This
is where the control method we have proposed comes to the rescue: As we can
see in Fig. 7, by following a path in α > 0 and L > 0 space, a discrete breather
solution can be continued to a higher value of α, by choosing L in the controlled
system such that the solution remains stable!
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Fig. 10. When the uncontrolled system approaches a bifurcation point for α = 0.08 and
L = 0 (upper left figure), the bifurcation can be avoided by increasing the control
parameter, for example to L = 0.13, such that the breather solution is asymptotically
stable (upper right). When the coupling strength is increased to α = 0.082 (lower
left), control can be switched off to return to the breather of the uncontrolled system,
which is now unstable (lower right)

Therefore, since by the above Proposition one can always find L such that
stability is possible for any coupling α, this allows the continuation of any so-
lution of the α = 0 case to α > 0 values beyond bifurcation, demonstrating the
existence of breather solutions in the corresponding parameter regime. The fact
that ûn, which is a (stable) solution of the controlled system is by definition
also a (unstable) solution of the uncontrolled system, implies that we have suc-
ceeded in continuing a discrete breather solution to higher values of the coupling
parameter.

In Fig. 6, we show in L, α space the regions of stability of this particular
breather. As is well-known by the work of Segur and Kruskal [16], breathers
are not expected to exist in these systems in the continuum limit of α going to
infinity. At what coupling value though and how do they disappear? Can we use
our control aided continuation methods to follow them at arbitrarily high α to
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Fig. 11. If the coupling α is increased, the control parameter L has to be larger
to achieve stability and successful control. Shown here are the regions for which the
breather of Fig. 8 is a stable or unstable solution un (t) = ûn (t) of (14)

be able to answer such questions? Currently, we are working on this problem
and results are expected to appear in a future publication [17].
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Chaos or Order in Double Barred Galaxies?
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Abstract. Bars in galaxies are mainly supported by particles trapped around closed
periodic orbits. These orbits respond to the bar’s forcing frequency only and lack free
oscillations. We show that a similar situation takes place in double bars: particles get
trapped around orbits which only respond to the forcing from the two bars and lack
free oscillations. We find that writing the successive positions of a particle on such an
orbit every time the bars align generates a closed curve, which we call a loop. Loops
allow us to verify consistency of the potential. As maps of doubly periodic orbits, loops
can be used to search the phase-space in double bars in order to determine the fraction
occupied by ordered motions.

1 Introduction

Bars within bars appear to be a common phenomenon in galaxies. Recent surveys
show that up to 30% of early-type barred galaxies contain nested bars [4]. The
relative orientation of the two bars is random, therefore it is likely that the
bars rotate with different pattern speeds. Inner bars, like large bars, are made
of relatively old stellar populations, since they remain distinct in near infrared
[5]. Galaxies with two independently rotating bars do not conserve the Jacobi
integral, and it is a complex dynamical task to explain how such systems are
sustained. To account for their longevity, one has to find sets of particles that
support the shape of the potential in which they move. Particle motion in a
potential of double bars belongs to the general problem of motion in a pulsating
potential [6] [9], of which the restricted elliptical 3-body problem is the best
known example. Families of closed periodic orbits have been found in this last
problem, where the test particle moves in the potential of a binary star with
components on elliptical orbits [2]. However, such families are parameterized by
values that also characterize the potential (i.e. ellipticity of the stellar orbit and
the mass ratio of the stars), and their orbital periods are commensurate with
the pulsation period of the potential. For a given potential, these families are
reduced to single orbits separated in phase-space. The solution for double bars
is formally identical, and there an orbit can close only when the orbital period
is commensurate with the relative period of the bars. Such orbits are separated
in phase-space, and therefore families of closed periodic orbits are unlikely to
provide orbital support for nested bars. Another difficulty in supporting nested
bars is caused by the piling up of resonances created by each bar, which leads
to considerable chaotic zones. In order to minimize the number of chaotic zones,
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resonant coupling between the bars has been proposed [10], so that the resonance
generated by one bar overlaps with that caused by the other bar.

Finding support for nested bars has been hampered by the fact that closed
periodic orbits are scarce there. However, it is particles, not orbits, which create
density distributions that support the potential. The concept of closed periodic
orbit is too limiting in investigation of nested bars, and another description of
particle motion, which does not have its limitations, is needed. Naturally, in
systems with two forcing frequencies, double-periodic orbits play a fundamental
role. Thus in double bars a large fraction of particle trajectories gets trapped
around a class of double-periodic orbits. Although such orbits do not close in
any reference frame, they can be conveniently mapped onto the loops [8], which
are an efficient descriptor of orbital structure in a pulsating potential. The loop
is a closed curve that is made of particles moving in the potential of a doubly
barred galaxy, and which pulsates with the relative period of the bars. Orbital
support for nested bars can be provided by placing particles on the loops.

Here I give a systematic description of the loop approach, which recovers
families of stable double-periodic orbits, and which can be applied to any pul-
sating potential. In Sect. 2 I use the epicyclic approximation to introduce the
basic concepts, and in Sect. 3 I outline the general method.

2 The Epicyclic Solution for Any Number of Bars

If a galaxy has a bar that rotates with a constant pattern speed, it is convenient
to study particle orbits in the reference frame rotating with the bar. If two or
more bars are present, and each rotates with its own pattern speed, there is
no reference frame in which the potential remains unchanged. In order to point
out formal similarities in solutions for one and many bars, I solve the linearized
equations in the inertial frame. This is equivalent to the solution in any rotating
frame, and the transformation is particularly simple: in the rotating frame the
centrifugal and Coriolis terms are equivalent to the Doppler shift of the angular
velocity. It is convenient to show it in cylindrical coordinates (R, ϕ, z): if ez is
the rotation axis, then the R and ϕ components of the equation of motion for
the rotating frame, r̈ = −∇Φ − 2(ΩB × ṙ) − ΩB × (ΩB × r), can be written as

R̈ − R(ϕ̇ + ΩB)2 = − ∂Φ

∂R
,

Rϕ̈ + 2Ṙ(ϕ̇ + ΩB) = − 1
R

∂Φ

∂ϕ
.

These equations are identical with the components of the equation of motion in
the inertial frame,

r̈ = −∇Φ, (1)

where clearly the angular velocity ϕ̇ in the rotating frame corresponds to ϕ̇+ΩB

in the inertial frame. For the rest of this section I assume the inertial frame, in
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which the equation of motion (1) has the following R and ϕ components in
cylindrical coordinates

R̈ − Rϕ̇2 = − ∂Φ

∂R
, (2)

Rϕ̈ + 2Ṙϕ̇ = − 1
R

∂Φ

∂ϕ
. (3)

The z component in any frame is z̈ = −∂Φ/∂z, but I consider here motions in
the plane of the disc only, hence I neglect the dependence on z.

To linearize equations (2) and (3), one needs expansions of R, ϕ and Φ to first
order terms. The epicyclic approximation is valid for particles whose trajectories
oscillate around circular orbits. For such particles one can write

R(t) = R0 + RI(t), (4)
ϕ(t) = ϕ00 + Ω0t + ϕI(t), (5)

Φ(R, ϕ, t) = Φ0(R) + ΦI(R, ϕ, t), (6)

where terms with index I are small to the first order, and second- and higher-
order terms were neglected. The parameter ϕ00 allows the particle to start from
any position angle at time t = 0, so that ϕ0 = ϕ00 + Ω0t. Asymmetry ΦI in the
potential is small and may be time-dependent. The angular velocity Ω0 on the
circular orbit of radius R0 relates to the potential Φ0 through the zeroth order
of (2): Ω2

0 = (1/R0)(∂Φ0/∂R) |R0 . The zeroth order of (3) is identically equal to
zero, and the first order corrections to (2) and (3) take respectively forms

R̈I − 4AΩ0RI − 2R0Ω0ϕ̇I = −∂ΦI

∂R
|R0,ϕ0 , (7)

R0ϕ̈I + 2Ω0ṘI = − 1
R0

∂ΦI

∂ϕ
|R0,ϕ0 , (8)

where A is the Oort constant defined by 4AΩ0 = Ω2
0 − ∂2Φ0

∂R2 |R0 .
We assume that the bars are point-symmetric with respect to the galaxy

centre. Thus to first order the departure of the barred potential from axial sym-
metry can be described by a term cos(2ϕ). If multiple bars, indexed by i, rotate
independently as solid bodies with angular velocities Ωi, the time-dependent
first-order correction ΦI to the potential can be written as

ΦI(R, ϕ, t) =
∑

i

Ψi(R) cos[2(ϕ − Ωit)], (9)

where the radial dependence Ψi(R) has been separated from the angle depen-
dence. No phase in the trigonometric functions above means that we define t = 0
when all the bars are aligned. Derivatives of (9) enter right-hand sides of (7) and
(8), which after introducing ωi = 2(Ω0 − Ωi) take the form

R̈I − 4AΩ0RI − 2R0Ω0ϕ̇I = −
∑

i

∂Ψi

∂R
|R0 cos(ωit + 2ϕ00), (10)

R0ϕ̈I + 2Ω0ṘI =
2

R0

∑

i

Ψi(R0) sin(ωit + 2ϕ00). (11)
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In order to solve the set of equations (10,11), one can integrate (11) and
get an expression for R0ϕ̇I , which furthermore can be substituted to (10). This
substitution eliminates ϕI , and one gets a single second order equation for RI ,
which can be written schematically as

R̈I + κ2
0RI =

∑

i

Ai cos(ωit + 2ϕ00) + Cϕ, (12)

where Ai = − 4Ω0Ψi

ωiR0
− ∂Ψi

∂R |R0
, κ2

0 = 4Ω0(Ω0 − A), and Cϕ/2Ω0 is the integration
constant that appears after integrating (11). This is the equation of a harmonic
oscillator with multiple forcing terms, whose solution is well known. It can be
written as

RI(t) = C1 cos(κ0t + δ) +
∑

i

Mi cos(ωit + 2ϕ00) + Cϕ/κ2
0. (13)

The first term of this solution corresponds to a free oscillation at the local
epicyclic frequency κ0, and C1 is unconstrained. The terms under the sum de-
scribe oscillations resulting from the forcing terms in (9), and Mi are functions
of Ai. Hereafter I focus on solutions without free oscillations, thus I assume that
C1 = 0. These solutions will lead to closed periodic orbits and to loops. The
formula for ϕI(t) can be obtained by substituting (1) into the time-integrated
(11). As a result, one gets

ϕ̇I =
∑

i

Ni cos(ωit + 2ϕ00) − 2ACϕ

κ2
0R0

, (14)

where again Ni are determined by the coefficients of the equations above. Note
that to the first order Ω0[R0 + Cϕ/κ2

0] = Ω0[R0] − 2ACϕ/κ2
0R0, thus the inte-

gration constants entering (1) and (14) correspond to a change in the guiding
radius R0, and to the appropriate change in the angular velocity Ω0. They all
can be incorporated into R0, and in effect the unique solutions for RI and ϕI

are

RI(t) =
∑

i

Mi cos(ωit + 2ϕ00), (15)

ϕI(t) =
∑

i

N ′
i cos(ωit + 2ϕ00) + const, (16)

where free oscillations have been neglected. The integration constant in (16) is
an unconstrained parameter of the order of ϕI .

2.1 Closed Periodic Orbits in a Single Bar

In a potential with a single bar there is only one term in the sums (15) and
(16), hereafter indexed with B. Consider the change in values of RI and ϕI for a
given particle after half of its period in the frame corotating with the bar. This
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interval is taken because the bar is bisymmetric, so its forcing is periodic with
the period π in angle. After replacing t by t + π/(Ω0 − ΩB) one gets

RI = MB cos[ωB(t +
π

Ω0 − ΩB
) + 2ϕ00]

= MB cos(ωBt + 2π + 2ϕ00).

Thus the solution for RI after time π/(Ω0 − ΩB) returns its starting value,
and the same holds true for ϕI . After twice that time, i.e. in a full period of this
particle in the bar frame, the epicycle centre returns to its starting point and the
orbit closes. Thus (15) and (16) describe closed periodic orbits in the linearized
problem of a particle motion in a single bar.

2.2 Loops in Double Bars

When two independently rotating bars coexist in a galaxy (hereafter indexed by
B and S), there is no reference frame in which the potential is constant. Thus
when a term from one bar in (15) and (16) returns to its starting value, the term
from the other bar does not (unless the frequencies of the bars are commensu-
rate). Therefore the particle’s trajectory does not close in any reference frame.
However, consider the change in value of RI and ϕI after time π/(ΩS − ΩB),
which is the relative period of the bars. One gets

RI = MB cos[ωB(t +
π

ΩS − ΩB
) + 2ϕ00] + MS cos[ωS(t +

π

ΩS − ΩB
) + 2ϕ00]

= MB cos(ωBt + 2π
Ω0 − ΩB

ΩS − ΩB
+ 2ϕ00) + MS cos(ωSt + 2π

Ω0 − ΩS

ΩS − ΩB
+ 2ϕ00)

= MB cos(ωBt + 2π + 2ϕ01) + MS cos(ωSt + 2ϕ01),

where ϕ01 = ϕ00+π Ω0−ΩS

ΩS−ΩB
. The same result can be obtained for ϕI . This means

that the time transformation t → t + π/(ΩS − ΩB) is equivalent to the change
in the starting position angle of a particle from ϕ00 to ϕ01. Consider motion
of a set of particles that have the same guiding radius R0, but start at various
position angles ϕ00. This is a one-parameter set, therefore in the disc plane it is
represented by a curve, and because of continuity of (15) and (16) this curve is
closed. After time π/(ΩS − ΩB), a particle starting at angle ϕ00 will take the
place of the particle which started at ϕ01, a particle starting at ϕ01 will take the
place of another particle from this curve and so on. The whole curve will regain
its shape and position every π/(ΩS − ΩB) time interval, although positions of
particles on the curve will shift. This curve is the epicyclic approximation to the
loop: a curve made of particles moving in a given potential, such that the curve
returns to its original shape and position periodically. In the case of two bars,
the period is the relative period of the bars, and the loop is made out of particles
having the same guiding radius R0. Particles on the loop respond to the forcing
from the two bars, but they lack any free oscillation. An example of a set of
loops in a doubly barred galaxy in the epicyclic approximation can be seen in
[7]. Since they occupy a significant part of the disc, one should anticipate large
zones of ordered motions also in the general, non-linear solution for double bars.
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3 Full Nonlinear Solution for Loops in Nested Bars

Tools and concepts useful in the search for ordered motions in double bars are
best introduced through the inspection of particle trajectories in such systems.
For this inspection I chose the potential of Model 1 defined in [8], where the
small bar is 60% in size of the big bar, and pattern speeds of the bars are not
commensurate. Consider a particle moving in this potential inside the corotation
of the small bar. Simple experiments with various initial velocities show that if
the initial velocity is small enough, the particle usually remains bound. A typical
trajectory is shown in the left panels of Fig.1 – since it depends on the reference
frame, it is written twice, for reference frame of each bar. Further experimenting
with initial velocities shows that particle trajectories are often even tidier: they
look like those in the right panels of Fig.1, as if the trajectories were trapped
around some regular orbit.

Fine adjustments of the initial velocity lead to a highly harmonious trajectory
(Fig.2), which looks like a loop orbit in a potential of a single bar (see e.g. Fig.3.7a
in [19]). This is only a formal similarity, but understanding it will let us find out
what kind of orbit we see in Fig.2. The loop orbit in a single bar forms when
a particle oscillates around a closed periodic orbit. Therefore two frequencies
are involved: the frequency of the free oscillation, and the forcing frequency of
the bar. On the other hand, the Fourier transform of the trajectory from Fig.2
shows two sharp peaks at frequencies equal to the forcing frequencies of the two
bars (Fig.3). Thus the trajectory from Fig.2 also has two frequencies: this time
these are the forcing frequencies from the two bars, while the free oscillation
is absent. This is how the solution in the linear approximation (Sect. 2.2) was
constructed. We conclude that in both the linear (epicyclic approximation) case

�

Fig. 1. Two example trajectories (one in the two left panels, one in the two right
ones) of a particle that moves in the potential of two independently rotating bars. The
particle is followed for 10 relative periods of the bars, and its trajectory is displayed in
the frame corotating with the big bar (top panels), and the small bar (bottom panels).
Each bar is outlined in its own reference frame by the dotted line. Large dot marks the
starting point of the particle.
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Fig. 2. A doubly periodic orbit in the doubly barred potential, followed for 20 relative
periods of the bars, and written in the frame corotating with the big bar (left), and the
small bar (right). The long axis of each bar is marked by the dashed line. Dots mark
positions of the particle at every alignment of the bars.

Fig. 3. Fourier transforms of the trajectories from right panels of Fig.1 (dotted line) and
from Fig.2 (solid line). The peaks in the solid line are related to the forcing frequencies
of the bars, and the peaks in the dotted line are not.

and the general case we are dealing with doubly periodic orbits in an oscillating
potential of a double bar, with frequencies equal to the forcing frequencies of
the bars. In the epicyclic approximation, these orbits have a nice feature that
particles following them populate loops: closed curves that return to their original
shape and position at every alignment of the bars. One may therefore expect that
also in the general case these particles gather on loops.

If in the general case particles on doubly periodic orbits form a loop, one can
construct it by writing positions of a particle on such an orbit every time the
bars align. These positions are the initial conditions for particles forming the
loop, because after every alignment, the nth particle generated in this way takes
the position of particle n + 1. The first 20 positions of a particle on a doubly
periodic orbit are overplotted in Fig.2. They indeed seem to be arranged on a
closed ellipse-like curve; the shape of this curve varies in time, but it returns to
where it started at every alignment of the bars (Fig.4). This construction shows
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Fig. 4. Evolution of the loop from Fig.2 during one relative period of the bars. The
bars, outlined with solid lines, rotate counterclockwise. The loop is made out of points
that represent separate particles on doubly periodic orbits.

that in the general case particles on doubly periodic orbits also form loops. Note
that positions of particles on other orbits, which involve free oscillations, when
written at every alignment of the bars, densely populate some two-dimensional
section of the plane, and do not gather on any curve. It is extremely useful for
the investigation of the orbital structure in double bars that the appearance of
the loop is frame-independent. Loops provide an efficient way to classify doubly
periodic orbits, which has been hampered so far by the dependence of the last
ones on the reference frame.

It turns out that doubly periodic orbits play crucial role in providing orbital
support for the pulsating potential of double bars. No closed periodic orbits
have been proposed as candidates for the backbone of such a potential. If in a
given potential of two bars there are loops that follow the inner bar, and other
loops that follow the outer bar, then one may expect that such a potential is
dynamically possible. An example of such a potential has been constructed in
[8]. The loop from Fig.4 does not follow either bar in its motion, and therefore
it is unlikely that it supports the assumed potential. It can be shown that in
that potential, there are no loops which could support the two bars. Thus that
potential is not self-consistent. This example shows how efficient is the loop
approach in rejecting hypothetical doubly barred systems that have no orbital
support.

Doubly periodic orbits in double bars are surrounded by regular orbits in
the same way as are the closed periodic orbits in a single bar. In both cases,
the trapped regular orbits oscillate around the parent orbit. The trajectory from
the right panels of Fig.1 is an example of a regular orbit that is trapped around
the doubly periodic orbit from Fig.2. How much of the phase space in double
bars is occupied by orbits trapped around doubly periodic orbits? It can be
examined by launching a particle from e.g. the minor axis of the bar, in the
direction perpendicular to this axis, when the bars are aligned. If the particle
is trapped, its positions at every alignment of the two bars lie within a ring
containing the loop. The width of this ring depends on the particle’s position
along the minor axis, and on its velocity. It is displayed in Fig.5 for the potential
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Fig. 5. The width of the ring formed by particles trapped around loops in Model 2
from [8] as a function of the particle’s position along the minor axis of the aligned bars,
and of its velocity (perpendicular to this axis). Darker color means smaller width. In
the insert, the same is shown for rings around closed periodic orbits in a single bar
(same model, but inner bar axisymmetric). Regions related to the x1 and x2 orbits,
and to the loops originating from them, are marked.

of Model 2 defined in [8]. Two stripes of low width appear on the diagram, which
correspond to the x1 and x2 orbits in a single bar [3] (displayed in the insert).
Thus in double bars there are doubly periodic orbits that correspond to closed
periodic orbits in single bars. There are possible regions of chaos in double bars
(white stripes in Fig.5), but overall loops in double bars and periodic orbits in
single bars trap similar volumes of phase-space around them.

4 Conclusions

In a potential of two independently rotating bars, a large fraction of phase space
can be occupied by trajectories trapped around parent regular orbits. These
orbits are doubly periodic, with the two periods corresponding to the forcing
frequencies of the two bars, but they do not close in any reference frame. Like
particle trajectories oscillating around closed periodic orbits in a single bar,
particle trajectories in double bars oscillate around the doubly periodic parent
orbits. The structure of the parent regular orbits can be mapped using the loop
approach, which allows us to single out dynamically possible double bars.
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Abstract. The Jeans equations relate the second-order velocity moments to the den-
sity and potential of a stellar system. For general three-dimensional stellar systems,
there are three equations, but these are not very helpful, as they contain six inde-
pendent moments. By assuming that the potential is triaxial and of separable Stäckel
form, the mixed moments vanish in confocal ellipsoidal coordinates. The three Jeans
equations and three remaining non-vanishing moments form a closed system of three
highly-symmetric coupled first-order partial differential equations in three variables.
They were first derived by Lynden–Bell in 1960, but have resisted solution by standard
methods. Here we present the general solution by superposition of singular solutions.

1 Introduction

Much has been learned about the mass distribution and internal dynamics of
galaxies by modeling their observed kinematics with solutions of the Jeans equa-
tions (e.g. [4]). The Jeans equations connect the second-order velocity moments
(or the velocity dispersions, if the mean streaming motion is known) directly to
the density and the gravitational potential of the galaxy, without the need to
know the phase-space distribution function f . In nearly all cases there are fewer
Jeans equations than velocity moments, so that additional assumptions have
to be made about the degree of anisotropy. Furthermore, the resulting second
moments may not correspond to a physical distribution function f ≥ 0. These
significant drawbacks have not prevented wide application of the Jeans approach
to the kinematics of spherical and axisymmetric galaxies. Many (components of)
galaxies have triaxial shapes ([2], [3]), including early-type bulges, bars, and gi-
ant elliptical galaxies. In this geometry, there are three Jeans equations, but little
use has been made of them, as they contain six independent second moments,
three of which have to be chosen ad-hoc (see e.g. [11]).

An exception is provided by the special set of triaxial mass models that have
a gravitational potential of Stäckel form. In these systems, the Hamilton–Jacobi
equation separates in confocal ellipsoidal coordinates ([19]), so that all orbits
have three exact integrals of motion, which are quadratic in the velocities. The
three mixed second-order velocity moments vanish, so that the three Jeans equa-
tions for the three remaining second moments form a closed system. Lynden–Bell
([13]) was the first to derive the explicit form of these Jeans equations. He showed
that they constitute a highly symmetric set of three first-order partial differen-
tial equations for three unknowns, each of which is a function of the ellipsoidal
coordinates, but he did not derive solutions.
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When it was realized that the orbital structure in the triaxial Stäckel models
is very similar to that in numerical models for triaxial galaxies with cores ([6],
[16]), interest in the second moments increased, and the Jeans equations were
solved for a number of special cases. These include the axisymmetric limits
and elliptic discs ([8], [10]), triaxial galaxies with only thin tube orbits ([12]),
and the scale-free limit ([11]). In all these cases the equations simplify to a
two-dimensional problem, which can be solved with standard techniques after
transforming two first-order equations into a single second-order equation in
one dependent variable. However, these techniques do not carry over to a single
third-order equation in one dependent variable, which is the best that one could
expect to have in the general case. As a result, the latter has remained unsolved.

We have solved the two-dimensional case with an alternative solution method,
which does not use the standard approach, but instead uses superposition of
singular solutions. This approach can be extended to three dimensions, and
provides the general solution for the triaxial case in closed form. We present
the detailed solution method elsewhere ([23]), and here we summarise the main
results. In ongoing work we will apply our solutions, and will use them together
with the mean streaming motions ([20]) to study the properties of the observed
velocity and dispersion fields of triaxial galaxies.

2 The Jeans Equations for Separable Models

We define confocal ellipsoidal coordinates (λ, µ, ν) as the three roots for τ of

x2

τ + α
+

y2

τ + β
+

z2

τ + γ
= 1 , (1)

with (x, y, z) the usual Cartesian coordinates, and with constants α, β and γ such
that −γ ≤ ν ≤ −β ≤ µ ≤ −α ≤ λ. Surfaces of constant λ are ellipsoids, and
surfaces of constant µ and ν are hyperboloids of one and two sheets, respectively.
The confocal ellipsoidal coordinates are approximately Cartesian near the origin
and become conical at large radii, i.e., equivalent to spherical coordinates.

We consider models with a gravitational potential of Stäckel form

VS(λ, µ, ν) = − F (λ)
(λ−µ)(λ−ν)

− F (µ)
(µ−ν)(µ−λ)

− F (ν)
(ν−λ)(ν−µ)

, (2)

where F (τ) is an arbitrary smooth function. This potential is the most general
form for which the Hamilton–Jacobi equation separates ([15], [18]) All orbits
have three exact isolating integrals of motion, which are quadratic in the veloc-
ities (e.g. [6]). There are no irregular orbits, so that Jeans’ theorem is strictly
valid ([14]), and the distribution function f is a function of the three integrals.
Therefore, out of the six symmetric second-order velocity moments, defined as

〈vivj〉(x) =
1
�

∫ ∫ ∫
vivjf(x,v) d3v , (i, j = 1, 2, 3), (3)
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with density �, the three mixed moments vanish, and we are left with 〈v2
λ〉, 〈v2

µ〉
and 〈v2

ν〉, related by three Jeans equations. These were first derived by Lynden–
Bell ([13]), and can be written in the following form ([23])

∂Sλλ

∂λ
− Sµµ

2(λ−µ)
− Sνν

2(λ−ν)
= g1(λ, µ, ν) , (4a)

∂Sµµ

∂µ
− Sνν

2(µ−ν)
− Sλλ

2(µ−λ)
= g2(λ, µ, ν) , (4b)

∂Sνν

∂ν
− Sλλ

2(ν−λ)
− Sµµ

2(ν−µ)
= g3(λ, µ, ν) , (4c)

where we have defined the diagonal components of the stress tensor

Sττ (λ, µ, ν) =
√

(λ−µ)(λ−ν)(µ−ν) �〈v2
τ 〉 , τ = λ, µ, ν, (5)

and the functions g1, g2 and g3 depend on the density and potential (2) as

g1(λ, µ, ν) = −
√

(λ−µ)(λ−ν)(µ−ν) �
∂VS

∂λ
, (6)

where g2 and g3 follow from g1 by cyclic permutation λ → µ → ν → λ. Similarly,
the three Jeans equations follow from each other by cyclic permutation. The
stress components have to satisfy the following continuity conditions

Sλλ(−α,−α, ν) = Sµµ(−α,−α, ν) , Sµµ(λ, −β,−β) = Sνν(λ, −β,−β) , (7)

at the focal ellipse (λ = µ = −α) and focal hyperbola (µ = ν = −β), respectively.
We prefer the form (5) for the stresses instead of the more common defini-

tion without the square root, since it results in more convenient and compact
expressions. In self-consistent models, the density � equals �S , with �S related
to VS by Poisson’s equation. The Jeans equations, however, do not require self-
consistency, so that we make no assumptions on the form of � other than that
it is triaxial, i.e., a function of (λ, µ, ν), and that it tends to zero at infinity.

3 The Two-Dimensional Case

When two or all three of the constants α, β or γ in (1) are equal, the triaxial
Stäckel models reduce to limiting cases with more symmetry and thus with fewer
degrees of freedom. Solving the Jeans equations for oblate, prolate, elliptic disc
and scale-free models reduces to the same two-dimensional problem ([10], [11],
[23]), of which the simplest form is the pair of Jeans equations for Stäckel discs

∂Sλλ

∂λ
− Sµµ

2(λ−µ)
= g1(λ, µ) , (8a)

∂Sµµ

∂µ
− Sλλ

2(µ−λ)
= g2(λ, µ) , (8b)
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with at the foci (λ = µ = −α) the continuity condition

Sλλ(−α,−α) = Sµµ(−α,−α) . (9)

In this case the stress components and the functions g1 and g2 are

Sττ (λ, µ) =
√

(λ−µ) �〈v2
τ 〉 (τ = λ, µ), g1(λ, µ) = −

√
(λ−µ) �

∂VS

∂λ
, (10)

where g2 follows from g1 by interchanging λ ↔ µ, and � denotes a surface density.
The two Jeans equations (8) can be recast into a single second-order partial

differential equation in either Sλλ or Sµµ, which can be solved by employing
standard techniques like Riemann’s method ([5], [23]). However, these standard
techniques do not carry over to the triaxial case, and we therefore introduce an
alternative method, based on the superposition of singular solutions.

We consider a simpler form of (8) by substituting for g1 and g2, respectively
g̃1 = 0 and g̃2 = δ(λ0 −λ)δ(µ0 −µ). We refer to solutions of these simplified
Jeans equations as singular solutions. Singular solutions can be interpreted as
contributions to the stresses at a fixed field point (λ, µ) due to a source point in
(λ0, µ0) (Fig. 1). The full stress at the field point can be obtained by adding all
source point contributions, each with a weight that depends on the local density
and potential. Once we know the singular solutions, we can use the superposition
principle to construct the the solution of the full Jeans equations (8).

Since the derivative of a step-function H is equal to a delta-function, it follows
that the singular solutions must have the form

Sλλ = A(λ, µ)H(λ0−λ)H(µ0−µ) ,
(11)

Sµµ = B(λ, µ)H(λ0−λ)H(µ0−µ)−δ(λ0−λ)H(µ0−µ) .

where the functions A and B must solve the homogeneous Jeans equations, i.e.,
(8) with zero right-hand side, and satisfy the following boundary conditions

A(λ0, µ) =
1

2(λ0−µ)
, B(λ, µ0) = 0 . (12)

Fig. 1. The (λ0, µ0)-plane. The total stress at a field point (λ, µ) consists of the
weighted contributions from source points at (λ0, µ0) in the domain D.
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We solve this two-dimensional homogeneous boundary problem by superposition
of particular solutions. We first derive a particular solution of the homogeneous
Jeans equations with a free parameter z, which we assume to be complex. We
then construct a linear combination of these particular solutions by integrating
over z. We choose the integration contours in the complex z-plane, such that
the boundary conditions (12) are satisfied simultaneously. The resulting homo-
geneous solutions are complex contour integrals, which can be evaluated in terms
of the complete elliptic integral of the second kind, E(w) ≡ ∫ π

2
0 dθ

√
1 − w sin2 θ,

and its derivative E′(w), as

A =
E(w)

π(λ0−µ)
, B = −2wE′(w)

π(λ0−λ)
, with w =

(λ0−λ)(µ0−µ)
(λ0−µ0)(λ−µ)

. (13)

We obtain a similar system of simplified Jeans equations by interchanging the
expressions for g̃1 and g̃2. The singular solutions of this simplified system follow
from (11) by interchanging λ ↔ µ and λ0 ↔ µ0 at the same time.

To find the solution to the full Jeans equations (8) at (λ, µ), we multiply
the latter singular solutions and (11) by g1(λ0, µ0) and g2(λ0, µ0) respectively,
and integrate over D = {(λ0, µ0): λ ≤ λ0 ≤ ∞, µ ≤ µ0 ≤ −α} (Fig. 1). This
gives the first two integrals of the two equations (14a) and (14b) below. The
remaining terms are due to the non-vanishing stress at the boundary µ = −α,
and are found by multiplying the singular solutions (11), evaluated at µ0 = −α,
by −Sµµ(λ0,−α) and integrating over λ0 in D. The final result for the solution
of the Jeans equations (8) for Stäckel discs, after using the evaluations (13), is

Sλλ(λ, µ) =

∞∫
λ

dλ0

−α∫
µ

dµ0

[
−g1(λ0, µ0)

2wE′(w)
π(µ0−µ)

+g2(λ0, µ0)
E(w)

π(λ0−µ)

]

−
∞∫

λ

dλ0 g1(λ0, µ) −
∞∫

λ

dλ0 Sµµ(λ0,−α)
[

E(w)
π(λ0−µ)

]
µ0=−α

, (14a)

Sµµ(λ, µ) =

∞∫
λ

dλ0

−α∫
µ

dµ0

[
−g1(λ0, µ0)

E(w)
π(λ−µ0)

−g2(λ0, µ0)
2wE′(w)
π(λ0−λ)

]

−
−α∫
µ

dµ0 g2(λ, µ0) + Sµµ(λ, −α) −
∞∫

λ

dλ0 Sµµ(λ0,−α)
[
−2wE′(w)

π(λ0−λ)

]
µ0=−α

. (14b)

The solution depends on � and VS through g1 and g2. This means that, for given
� and VS , the solution is uniquely determined once we have prescribed Sµµ at
the boundary µ = −α. At this boundary, Sλλ is related to Sµµ by the first Jeans
equation (8a), evaluated at µ = −α, up to an integration constant, which is
fixed by the continuity condition (9). We are thus free to specify either of the
two stress components at µ = −α.
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4 The General Case

The singular solution method introduced in the previous section can be extended
to three dimensions to solve the Jeans equations (4) for triaxial Stäckel models.
Although the calculations are more complex for a triaxial model, the stepwise
solution method is similar to that in two dimensions.

We simplify the Jeans equations (4) by setting two of the three functions
g1, g2 and g3 to zero and the remaining equal to δ(λ0−λ)δ(µ0−µ)δ(ν0−ν). In
this way, we obtain three similar simplified systems (i = 1, 2, 3), each with three
singular solutions Sττ

i (λ, µ, ν; λ0, µ0, ν0) (τ = λ, µ, ν), that describe the stress
components at a fixed field point (λ, µ, ν) due to a source point in (λ0, µ0, ν0).

The singular solutions have a form that is similar to that in the two-dimensio-
nal case (11). They consist of combinations of step-functions and delta-functions
multiplied by functions that are the solutions of homogeneous boundary prob-
lems. The functions that must solve a two-dimensional homogeneous boundary
problem can be found as in Sect. 3, and can be expressed in terms of complete
elliptic integrals, cf. (13). The singular solutions in the general case also contain
three functions A, B and C that must solve the triaxial homogeneous Jeans
equations, i.e., (4) with zero right-hand side, and satisfy three boundary condi-
tions. This three-dimensional homogeneous boundary problem can be solved by
integrating a two-parameter particular solution over both its complex param-
eters, and choosing the combination of contours such that the three boundary
conditions are satisfied simultaneously. The resulting homogeneous solutions A,
B and C are products of complex contour integrals, and can be evaluated as
sums of products of complete hyperelliptic integrals.

To find the solution of the full Jeans equations (4) , we multiply each singular
solution Sττ

i by gi(λ0, µ0, ν0), so that the contribution from the source point
naturally depends on the local density and potential. Then, for each coordinate
τ = λ, µ, ν, we add the three weighted singular solutions, and integrate over a
finite volume within the physical region −γ ≤ ν ≤ −β ≤ µ ≤ −α ≤ λ. This
results in the following general solution of the Jeans equations (4) for triaxial
Stäckel models

Sττ (λ, µ, ν) =

λe∫
λ

dλ0

µe∫
µ

dµ0

νe∫
ν

dν0

3∑
i=1

gi(λ0, µ0, ν0) Sττ
i (λ, µ, ν; λ0, µ0, ν0)

−
µe∫

µ

dµ0

νe∫
ν

dν0 Sλλ(λe, µ0, ν0) Sττ
1 (λ, µ, ν; λe, µ0, ν0)

−
νe∫

ν

dν0

λe∫
λ

dλ0 Sµµ(λ0, µe, ν0) Sττ
2 (λ, µ, ν; λ0, µe, ν0)

−
λe∫

λ

dλ0

µe∫
µ

dµ0 Sνν(λ0, µ0, νe) Sττ
3 (λ, µ, ν; λ0, µ0, νe) , (15)
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with τ = λ, µ, ν. Whereas the integration limits λ, µ and ν are fixed due to the
position of the field point, the limits λe, µe and νe are not, and may be any
value in the corresponding physical ranges, i.e., λe ∈ [−α,∞], µe ∈ [−β,−α]
and νe ∈ [−γ,−β], but λe 
= −α. The latter choice would lead to solutions
which generally have the incorrect radial fall-off, and hence are non-physical. If
we choose λe = ∞, there is no contribution from the second line in (15) due to
vanishing stress at large distance. If we furthermore take µe = −α and νe = −β,
the integration volume becomes the three-dimensional extension of D (Fig. 1).

Whereas the volume integral in (15) already solves the inhomogeneous Jeans
equations (4) , the three area integrals are needed to obtain the correct values at
the boundary surfaces λ = λe, µ = µe and ν = νe. On each of these surfaces the
three stress components are related by two of the three Jeans equations (4) and
the continuity conditions (7). Since the (weight) functions gi are known for given
� and VS , this means that the solution (15) yields all three stresses everywhere
in the triaxial model, once one of the stress components is prescribed on the
three boundary surfaces. If we take λe = ∞ and µe = νe = −β, the contributing
boundary surfaces reduce to the single (x, z)-plane, containing the long and the
short axis of the galaxy. This compares well with Schwarzschild ([17]), who used
the same plane to start his numerically calculated orbits from.

5 Discussion and Conclusions

Eddington ([9]) showed that the velocity ellipsoid in a triaxial galaxy with a sepa-
rable potential of Stäckel form is everywhere aligned with the confocal ellipsoidal
coordinate system in which the equations of motion separate. Lynden–Bell ([13])
derived the three Jeans equations which relate the three principal stresses to the
potential and the density. Solutions were found for the various two-dimensional
limiting cases, but with methods that do not carry over to the general case, which
remained unsolved. We have presented an alternative solution method, based on
the superposition of singular solutions (see [23] for details). This approach, un-
like the standard techniques, can be generalised to solve the three-dimensional
system. The resulting solutions contain complete (hyper)elliptic integrals, which
can be evaluated in a straightforward way.

The general Jeans solution is not unique, but requires specification of prin-
cipal stresses at certain boundary surfaces, given a separable triaxial potential
and a triaxial density distribution (not necessarily the one that generates the
potential). These boundary surfaces can be taken to be the plane containing the
long and the short axis of the galaxy, and, more specifically, the part that is
crossed by all three families of tube orbits and the box orbits.

The set of all Jeans solutions (15) contains all the stresses that are associated
with the physical distribution functions f ≥ 0, but, as in the case of spherical
and axisymmetric models, also contains solutions which are unphysical, e.g.,
those associated with distribution functions that are negative in some parts of
phase space. The many examples of the use of spherical and axisymmetric Jeans
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models in the literature suggest nevertheless that the Jeans solutions can be of
significant use.

While triaxial models with a separable potential do not provide an adequate
description of the nuclei of galaxies with cusped luminosity profiles and a mas-
sive central black hole ([7]), they do catch much of the orbital structure at larger
radii, and in some cases even provide a good approximation of the galaxy po-
tential. The solutions for the mean streaming motions, i.e., the first velocity
moments of the distribution function, are helpful in understanding the variety of
observed velocity fields in giant elliptical galaxies and constraining their intrin-
sic shapes (e.g. [1], [21], [22]). We expect that the projected velocity dispersion
fields that can be derived from our Jeans solutions will be similarly useful, and,
in particular, that they can be used to establish which combinations of viewing
directions and intrinsic axis ratios are firmly ruled out by the observations.

It is remarkable that the entire Jeans solution can be written down by means
of classical methods. This suggests that similar solutions can be found for the
higher dimensional analogues of (4) , most likely involving hyperelliptic integrals
of higher order. It is also likely that the higher-order velocity moments for the
separable triaxial models can be found by similar analytic means, but the effort
required may become prohibitive.
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Abstract. Supersonic nonlinear gas flow is studied in order to describe galactic spiral
density waves. It is shown analytically that ultra harmonic periodic solutions may exist
if nonlinear effects are taken into account. The relevance of those solutions to observed
data is discussed.

1 Introduction

An extensive literature has been devoted to simulations of the large-scale flow of
interstellar gas in a stellar spiral density wave in galaxies, e.g. [1–4]. This study
has played an important role in the understanding of many processes occurring
in galaxies such as the structure of dust lanes observed along the inner edges
of spiral arms in many galaxies [5, 6]; the enhanced synchrotron radiation from
spiral arms [7, 8]; the radio emission of HI at the wavelength 21 cm [9]; a trigger
mechanism for star formation, and the creation the narrow bands of young highly
luminous stars [2, 10, 11]. A review of the problem is presented in [12–14]. It
has been shown that spiral density waves, propagating in the galactic disk and
interpreted as the galactic spiral arms, may induce large nonlinear perturbations
in the gas flow. It was suggested that such nonlinear phenomena take place in
the gas even though the amplitude of the spiral stellar field is relatively small.
This is so since the response to the gravitational potential induced by the stellar
density wave is roughly proportional to a−2, where a is the velocity dispersion
for stars, and the sound speed for the gas [4]. For the gas a ∼ 8 km/s, while
for the stars a ∼ 40 km/s. Hence, if the amplitude of the perturbation field is
small, one can use a linear theory to calculate a disturbance in the stellar disk.
In contrast, the perturbation in the gaseous component is much stronger and
one has to use a nonlinear theory. The steady flow in the nonlinear regime was
considered numerically and it was shown, in particular, that a secondary shock
wave is possible (this was borne out by numerical calculations carried out for the
range of galactocentric radius r from 10.0kpc to 12.5kpc in the adopted model)
see [11]. The nonlinear effect may well account for the origin of the Sagitta-
Carina feature and relatively short spurs or feathers (see [11], and references
therein). Moreover, the nonlinear effect may provide an answer to the old puzzle
of how a two-arm potential drives multiple arms. In optical images we can see
primarily a brightness distribution, which, generally speaking, does not reflect
the over-all mass distribution. The spiral arms owe their high luminosity to the
fact that the brightest objects in the galaxy are concentrated in them: giant stars
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of the early OB spectral classes and ionized hydrogen HII regions which have high
luminosity in their emission line. Certain galaxies show a distinct spiral structure
outlined by stars of later spectral class that belong to the old population of
galaxy’s spherical and disk subsystems. This effect in galactic morphology was
first noticed by Zwicky [15] who detected smooth red arms in the disk of the
grand design galaxy M51 and showed that the morphology of the evolved disk
population need not follow the Hubble classification assigned from the young
population tracers. A similar point was also made by Vorontsov-Vel’yaminov
[16] and the same picture was later observed in certain other galaxies. Two
images of the giant grand design Hubble type Sc galaxy NGC 309 seen almost
face-on, one in blue light and the other in near infrared were published [17].

The aim of this paper is to analytically obtain conditions under which spiral
density wave may give rise to a nonlinear response of parametrically excited and
forced gas flow. That question is considered in Sect. 3 In addition it is aimed to
consider gas-star structures presented in Sect. 4 that are typical for real galaxies
in contrast to the results obtained from the purely gaseous response calculations
without taking into account the nonlinear effects.

2 Basic Equations

Consider the flow of a galactic interstellar gas under the influence the gravita-
tional potential due to the galactic stars. It is assumed that the gas rotates with
a given angular velocity Ω(r) at a distance r from the galactic center, while the
stars are assumed to be arranged along two spiral arms that result from a den-
sity wave with an angular phase velocity Ωp. Hence, in a frame that rotates with
angular velocity Ωp, the arms appear stationary. As a result, it is convenient to
write the hydrodynamic equations that describe the steady gas flow in a frame
that rotates with the angular velocity Ωp. They are:

∇ · (ρv) = 0, (1)

(v · ∇)v + 2Ωp × v = −1
ρ
∇P − ∇(Φ − 1

2
Ωp

2r2). (2)

In (1)–(2), ρ, v, and P = a2ρ are the density, velocity, and pressure of the
interstellar gas, respectively, and Φ is the gravitational potential of the stellar
subsystem.

It is assumed that the potential Φ is given by the sum of an axisymmet-
ric unperturbed potential Φ0(r) and a non axisymmetric perturbation Φ1(r, t).
The non axisymmetric part of gravitational potential is due to the stellar spiral
density wave and is of the form [2]

Φ1(r, t) = �φ̄1e
i(2(Ωpt−ϕ)+

∫
k(r)dr) (3)

where k is the radial wave number of the two-armed trailing spiral wave and is
related to the angle of inclination of a spiral arm to the circumferential direction
i by the relation k = −2/r/ tan i. Here and below r, ϕ are the galactocentric
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cylindrical coordinates and the axis of the galactic rotation is along the z-axis.
Obviously, the characteristic length in this problem is 1/k ∼ λ. According to
observations and following [2] a tightly wound spiral perturbation is considered,
in which the angle of inclination i is small, hence λ/r � 1 or |k|r � 1. It is
useful to introduce the spiral coordinates (η, ξ). The spiral coordinates are fixed
in the rotating frame (with angular velocity Ωp) such that η is constant along
the spiral arms while ξ is constant along lines that are orthogonal to the spiral
arms. Using the above definition of the spiral coordinates, the perturbed spiral
stellar gravitational potential can be written in the form [2]

Φ1(η) = F
Ω2r cos2 i

k
cos η, (4)

where F is the amplitude of the perturbation due to the stellar spiral density
wave as a fraction of the unperturbed axisymmetric gravitational potential. The
gaseous response depends on the strength of the density wave gravitational field
[11, 20] and have to be considered as nonlinear perturbation even though the
moderate spiral forcing being 10% of the axisymmetric force field [19, 20]

We turn now to deriving the equations that describe the gas flow under the
stellar gravitational potential in the spiral coordinate system defined above. In
order to do that we assume that the gas flow is given by an axisymmetric basic
flow that describes the response of the gas to the axisymmetric unperturbed
potential Φ0 plus a perturbation which results from the spiral perturbation in
the stellar gravitational potential Φ1, as given in (4).

The solutions of (1) and (2) for rapidly rotating thin gaseous disk that de-
scribes the basic axisymmetric flow is readily obtained in the spiral coordinate
system as

v‖0 = (Ω − Ωp)r cos i, v⊥0 = (Ω − Ωp)r sin i =
2
k

(Ω − Ωp) cos i, (5)

where v||, v⊥ are the gas velocity components parallel and perpendicular to the
spiral arms, respectively. It is easy to see that |v⊥0/v||0| ∼ 1/|k|r � 1.

In order to describe the perturbed variables the following angular velocity
scale is introduced:

χ = 2Ω[1 +
r

2Ω

dΩ

dr
cos2 i]1/2, (6)

with the aid of which the following normalization is introduced for the velocity
components:

u =
v⊥1

v̄⊥
, v̄⊥ = χ

cos i

k
, v =

v||1
v̄||

, v̄|| =
χ2

Ω

cos i

k
(7)

Example for values for the various parameters can be estimated from the
galactic equilibrium parameters at the solar position as given in [11]:

Ω = 24.7
km

sec kpc
, Ωp = 13.5

km

sec kpc
, χ = 31

km

sec kpc
. (8)
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Inserting (4-7) into (1) and (2), eliminating the perturbed density ρ1, and
assuming that the derivatives across the spiral arms are much bigger than the
derivatives along the arms [18] result in the following two equations for the
perturbed velocity components:

(−ν + u)2 − c2

−ν + u

du

dη
= v − f sin η, u + (−ν + u)

dv

dη
= 0, (9)

where

f = F (Ω2/χ2)kr, c2 =
a2k2

χ2 cos2 i
, ν = −v⊥0

v̄⊥
, (10)

are the dimensionless amplitude of the stellar density spiral wave, the squared
dimensionless sound speed, and the dimensionless basic perpendicular velocity,
respectively. The values for those parameters as estimated from (8) are 0.1−0.2,
0.195, and 0.72, respectively.

Finally, by eliminating v and defining a new variable y = u/(fν), a single
second order ordinary differential equation is obtained:

y′′ + ω2
0(1 + 2f cos η − f2y cos η)y = ω2

0 cos η + f((2ν2ω2
0 + 1)yy′′ +

+ (2ν2ω2
0 − 1)y′2 + ω2

0y2) + f2ν2ω2
0(−3y2y′′ − 2yy′2) +

+ f3ν2ω2
0(y3y′′ + y2y′2). (11)

where ω2
0 = (ν2 −c2)−1 is the natural frequency of linear oscillations near steady

state as a result of a small imbalance between the Coriolis force and the gaseous
pressure.

3 Ultra Harmonic Resonances

The solution of(11) for the cases in which ω0 �≈ 2, 3, . . . , n was presented in
[20]. However, the response of the n − th harmonic (ultra harmonic resonances
response) can be expected to be sufficiently large if ω0 ≈ 2, 3, . . . , n as a result
of the combined ultra harmonic and the parametric resonances. The existence of
this ultra harmonic resonances has been recently demonstrated by the numerical
calculations [11]. Equation (11) will be analyzed analytically in this section by
the method of multiple scales which is often used in the analysis of weakly
nonlinear dynamic systems [21].

3.1 The Resonant Case of ω0 ≈ 2

In this the combined ultra harmonic and the parametric resonances response
when ω0 ≈ 2 will be studied. The solution of (11) to first order in the small
parameter f is straight forward and is given by

y0 = a0 cos(ωη) + 2Λ cos η, Λ =
1
2

ω2
0

ω2
0 − 1

(12)
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Substituting (12) into (11), equating coefficient of like powers of f , one obtains
an equation for determining the next-order terms of the expansion of the solution
y(η). However, the fact that ω0 is close to 2 gives rise to secular terms and small-
divisors in the higher order equations. Consequently, in order to proceed further,
a detuning parameter σ is introduced

ω0 = 2 + σ, (13)

as well as higher order deviations of the frequency from ω0

ω = ω0 + ω(1) + ω(2) + . . . . (14)

Using the above definitions, the equation for y1 may be rewritten as:

y1
′′ + ω2

0y1 = f(−8ν2ω2
0Λ2 + 2ω2

0Λ(Λ − 1)) cos 2η

+2ω0a0
′ sin(ω0 + ω(1))η + 2ω0a0(ω(1)η)

′
cos(ω0 + ω(1))η + NST (15)

where NST stands for non secular terms. Eliminating the secular terms from
last equation yields

f(−8ν2ω2
0Λ2 + 2ω2

0Λ(Λ − 1)) sin(σ + ω(1))η + 2ω0a
′
0 = 0

f(−8ν2ω2
0Λ2 + 2ω2

0Λ(Λ − 1)) cos(σ + ω(1))η + 2ω0a0(ω(1)η)
′
= 0 (16)

As a0 as well as ω(1) are constants, it follows from (16) that

ω(1) = −σ. (17)

It can be seen that unlike the non resonant response for which the amplitude
of 2-nd harmonic is proportional to f which is a small parameter, here this
amplitude is of order f/σ which is of order one. Thus, small perturbations in
the stellar gravitational potential give rise to finite response in the gas flow.

3.2 The Resonant Case of ω0 ≈ 3

In the case of the combined ultra harmonic and parametric resonances response
when ω0 ≈ 3 the small-divisor terms that result from the non linear terms occur
at O(f2) and the amplitudes of the responses have been ordered so that affects
of the resonances first occur at O(f2). The solution of (11) to order O(f) is given
by

y1 = a10 + 2Λ cos η + a12 cos 2η + a13 cos ωη, (18)

where

a10 = −2fΛ2, a12 = −4f
Λ2

ω2
0 − 4

(2ν2ω2
0 +

ω2
0

2
− 1) (19)



114 Edward Liverts and Michael Mond

Substituting the solution (18) into (11) yields

y2
′′ + ω2

0y2 = A cos 3η + B cos ωη + 2ω0a13
′ sin ωη +

+2ω0a13(ω(1)η)
′
cos ωη + NST (20)

in which

A = fω2
0a12(2Λ − 2ν2 − 2 − 8ν2Λ) + f2Λ2(1 + 10ν2ω2

0Λ)

B = f(−(2ν2ω2
0 + 1)ω2a10a13 + fν2ω2

0(8Λ2a13 +
7
4
a13

3ω2))

To proceed further, once again a detuning parameter σ and the deviation of
the frequency from ω0 due to non-linearity are introduced according to

ω0 = 3 + σ

ω = ω0 + ω(1) + ω(2) + . . . (21)

Thus, eliminating the secular terms from (20) yields

A sin(σ + ω(1)) + 2ω0a13
′ = 0

A cos(σ + ω(1)) + B + 2ω0a13(ω(1)η)′ = 0 (22)

whose solution is
ω(1) = −σ (23)

In this case steady state solutions correspond to the solution of the cubic equa-
tion. For such detuning parameter that scales as f2 the solution for a13 is of order
one. Thus, once again, small perturbations in the stellar gravitational potential
give rise to finite response of the gas flow.

Figure 1 presents the resonant solutions in the velocity plane and gas density
profiles compared with non-resonant solutions.
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Fig. 1. Flow in velocity plane and normalized gas density profiles. Three cases are pre-
sented: 1. (a) and (d) - without resonance for distance from galactic center, r=10kpc,
2. (b) and (e) - resonance one-two for r=12.5 kpc, 3. (c) and (f) - resonance one-three
for r=13.5 kpc. The variation of the normalized density ρ/ρ0 presented as a function
of the phase angle η.
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4 Interpretation of the Results

The importance of corotation and Lindblad resonances has been recognized long
ago see [22–25]. Particularly, it was found by calculation of the orbits that the
main families of orbits in realistic model of spiral galaxy enhance the spiral arms
up to the resonance χ/(Ω − Ωp) = 4/1. In this paper we have employed the
hydrodynamic approach following [11] and have seen that the ultra harmonic
resonances exist if the natural frequency ω0 is a rational multiple of the forcing
frequency. In our case the natural frequency is given by

ω0 ≈ χ

2(Ω − Ωp)
(1 +

a2k2

8(Ω − Ωp)2 cos2 i
)

and forcing frequency is equal to unity. So considered above ultra harmonic
resonances ω0 ≈ 2 and ω0 ≈ 3 correspond to 4/1 and 6/1 respectively.

The substantially different spatial arrangement of spirals of young and old
objects would appear to be the most remarkable features [15]. This circumstance
should be an important factor in the theory of the origin of the spiral structure,
in attempts to explain the observational data. Therefore we suppose that non-
linear gas response effects on spiral density wave that is created by old objects
could be responsible for the appearance of structures similar to the observed
ones. To show this we have plotted a chart (Fig. 2) as the variation of the gas
density obtained in our calculations. We see from Fig. 2 that the secondary
compression associated with the resonance one-two obtained in our calculations
for distance from galactic center 10.5 kpc up to 11.5 kpc that produces the
arm bifurcation and may well account for major spiral features. Notice that
a bifurcation of gaseous spiral arms was modeled numerically in [27] and was
associated also with the presence of nonlinear effects at the 4/1 ultraharmonic

Fig. 2. Distribution of the gas density in response to galactic spiral density wave for
two-arms mode and Ωp = 13.5 km/sec/kpc. The darkness of the chart is proportional
to the value of the density (The black line shows the minimum)
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resonance. The resonance one-three is found in our calculations to extend in
distance from galactic center 13.5kpc up 14 kpc produce relatively short spurs
and not major spiral features.

The authors thanks Yuriy N. Efremov and Arthur D. Chernin from the Stern-
berg Astronomical Institute, Moscow State University for their interest in this
work. The authors have benefited from helpful discussions with Michael Gedalin
and Evgeny Griv from the Ben-Gurion University of the Negev in Israel. Also,
the authors are grateful to an anonymous referee of the paper for his/her useful
comments on the original manuscript.
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Abstract. This paper presents a combination of methods that estimate reliably the
level of chaos (proportion of particles in chaotic orbits and the corresponding values of
the Lyapunov Characteristic Numbers) in self-consistent N-body models of elliptical
galaxies. A careful simultaneous use of several numerical tools can induce the propor-
tion of particles in chaotic orbits dynamically important within one Hubble time. In
models with smooth centers the mass component in chaotic motion is less than about
30% of the total mass. In models with central black holes this percentage increases up
to 70%. Typical Lyapunov characteristic numbers are below 0.1 in units of the inverse
crossing time. A remarkable property of the chaotic mass component is that it has a
different surface density profile than that of the ordered component. The superposition
of the two profiles causes observable humps in the overall profile, which are suggested
as a possible observational ‘signature’ of chaos in elliptical galaxies.

1 Introduction

An important open problem of stellar dynamics is the level of chaos in realistic
self-consistent stellar systems. In this paper we study the level of chaos in four
different self-consistent N-Body models of elliptical galaxies in equilibrium.

Two of the N-Body systems (Q and C models) are produced from quiet and
clumpy cosmological initial conditions respectively [6], [4]. These models are
non-rotating and they have a smooth density profile at the center. The other
two models (QB1 and QB2) are produced from the Q model by adding a point
mass (black hole) at the center, with a mass equal to 0.1% and 1% of the total
galactic mass respectively. All the models are triaxial, but the Q and QB models
are more elliptical than the C-models.

The self-consistent potential at equilibrium is realized by the N-Body code [1]
as a smooth series of a radial plus spherical harmonic expansion. Near equilib-
rium, the expansion coefficients have almost constant values. Then the system
is represented approximately by a 3D autonomous Hamiltonian

H =
1
2
(ẋ2 + ẏ2 + ż2) + V (x, y, z) (1)

The equilibrium configurations are triaxial in all models, taken as x the direction
of the shortest axis and z the direction of the longest axis.
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2 Method to Distinguish Regular and Chaotic Orbits

The most chaotic orbits are identified by defining a particular threshold in
the values of their Lyapunov Characteristic Number (LCN). Orbits below this
threshold, although chaotic, behave macroscopically like regular orbits within a
Hubble time.

The method, used to distinguish between regular and chaotic orbits, faces
the problem of the very different (by two orders of magnitude) orbital periods of
particular orbits within the same system. When one calculates Lyapunov times,
must decide whether these times should be expressed in terms of the particular
periods of the orbits, or of the half mass crossing time (average dynamical period)
in the system. The present method provides a compromise for this problem and
gives a not very much biased estimator of the chaoticity of the orbits, as the
latter reflects to the macroscopic properties of the system within a Hubble time.
The method uses three different indicators.

2.1 Specific Finite Time Lyapunov Characteristic Number

The Specific Finite Time Lyapunov Characteristic Number Lj for the orbit of
the particle j is given by the formula

Lj(Trj , tj) =
Trj

tj

Nj∑

i=1

aij (2)

where Trj is the average radial period of the orbit, tj is the integration time,
Nj is the number of time steps ∆t = tj/Nj and aij is the stretching number [7]
at the time step i, (i = 1, ...Nj). The stretching number aij in (2) is defined in
terms of the length of the deviation vector ξj(ti) from the orbit j at the time ti
in the six-dimensional phase space, by the equation

aij = ln
ξj(ti + ∆t)

ξj(ti)
(3)

The deviation vectors ξj(ti) are calculated by numerical integration of the vari-
ational equations of motion.

The Hubble time is taken equal to 100 half mass crossing times (Thmct) of
the system. The values of Lj of all the orbits are calculated for the same number
of radial periods tj/Trj = 1200. Thus, the particles of even the shortest radial
periods (Trj ≥ Thmct/300) are integrated for more than 4 Hubble times. This
integration time detects chaotic orbits with Lj stabilized at values no smaller
than 10−3. This threshold is rather arbitrary but it is satisfactory for all practical
purposes.

2.2 Common Unit Finite Time LCN

The Ljs are converted in common units by defining the Common Unit Finite
Time Lyapunov Characteristic Number Lcu, as Lcu = LjThmct/Trj , in units of
1/Thmct. This number compares the chaotic orbits as regards their efficiency
within a Hubble time.
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2.3 Alignment Index

The method of Alignment Index [5] is based on some known properties of the
time evolution of deviation vectors [8], [9]. Consider the evolution of two arbitrary
different initial deviation vectors ξj1 and ξj2 of the same orbit. If an orbit is
chaotic, the two deviation vectors tend to become parallel or anti-parallel to
each other (depending on the initial values of the deviation vectors). If the orbit
is regular, the two vectors tend to become tangent to the surface of an invariant
torus and oscillate with respect to each other. This difference is measured by
taking the minimum of the quantities dj−(t) = |ξj1(t)−ξj2(t)| (parallel deviation
vectors) and dj+(t) = |ξj1(t) + ξj2(t)| (anti-parallel deviation vectors). This is
called the Smaller ALignment Index, (SALI), or simply Alignment Index, (AI).
For chaotic orbits, it reaches the limit of the computer accuracy (≈ 10−16) at
the end of the integration time. For regular orbits it is improbable to be less
than 10−3 all along the integration time. Thus, the distinction made by the AI
method is clear and fast, even for very weakly chaotic orbits.

3 Results

Due to computing time limitations, it is only possible to calculate the orbits of
a representative sample of particles of the whole system, namely, one in every
four particles uniformly distributed along the whole set of particles. Using as
initial conditions the three coordinates and velocities of each particle of the
sample, each orbit is integrated in the Hamiltonian (1) for a maximum time
tj = 1200Trj .

In Fig. 1a the values of the Lj of the particles in the sample of the Q-model
are plotted against their Alignment Indices at tj/Trj = 20, in log-log scale. Most
points appear concentrated in a single group of triangular shape around a mean
value of Log(Lj) � −1.4 with Log(AI) > −3. This is called a regular group.
A number of points form a lane emanating from the upper end of the regular
group towards smaller values of AI. The points on the lane correspond to orbits
that have just started indicating their chaotic character.

At tj/Trj = 100 (Fig. 1b) the main part of the regular group is displaced
towards lower values of Lj following a t−1 law. However, a good number of points
have followed a streaming motion along the lane towards smaller values of AI
and larger values of Lj and tend to form a chaotic group.

As time increases the number of orbits in the chaotic group increases, but
more and more slowly. At tj/Trj = 1200 (Fig. 1c) the chaotic group is well sep-
arated from the regular group. The streaming of points along the lane becomes
slower, but non-negligible. The points on this lane correspond to weakly chaotic
orbits.

By introducing a threshold Lj = 10−2.8 as the value separating the chaotic
from the regular group, and a threshold AI = 10−3, we find that the fraction
of the chaotic orbits (chaotic component) corresponds to about 32% of the total
mass. The rest is called regular component. If the points along the transport lane
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Fig. 1. The evolution of the orbits of the particles in the sample on the plane of the
Log(AI)-Log(L) at (a) 20, (b) 100, (c) 1200 radial periods. In (d) we plot the Finite
Time LCN in common units of (1/Thmct), as derived from the data of (c)

are not counted with the chaotic orbits, then we find that the ’strictly chaotic’
orbits (AI ≤ 10−10) are about 26%.

If Lj is converted in units of the inverse half mass crossing time Thmct of the
system, we find Lcu = LjThmct/Trj . Then, the results of Fig. 1c are converted
to those shown in Fig. 1d. The Lcu of the detected chaotic orbits range between
10−4.6 and 10−1.4, with a preference above the value of 10−3. It is obvious that
a number of orbits that have been characterized as chaotic (with Lj ≥ 10−2.8)
have values of Lcus much smaller than the minimum value of Lj , because of
their long radial periods. These small values of the Lcu, describe the very small
diffusion in a Hubble time.

Figure 2 shows the same planes Lj vs. AI and Lcu vs. AI as in the Q
model (Fig. 1c,d) for the experiments C (Fig. 2a,b), QB1 (Fig. 2c,d) and QB2
(Fig. 2e,f). The C model contains a smaller number of chaotic orbits and a
somewhat smaller appearing maximum value of Lj and Lcu. On the other hand,
chaos is much more abundant if we add a black hole (Fig. 2c,d model QB1 with a
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Fig. 2. (a,b),(c,d),(e,f) as Figs. 1c,d but for C, QB1, QB2 model respectively. Notice
that the QB models (especially QB2) have orbits with Lcus above 10−1

.

black hole of 0.1% and Fig. 2e,f. model QB2 with a black hole of 1% of the total
galactic mass). As the mass of black hole increases, there are more particles in
the region of higher Lyapunov numbers (Lj and Lcu). However, even in the QB2
model Ljs remain well below the value of 10−1. A small fraction of particles
have Lcu larger than 10−1 due to their very short radial periods. There is a
pronounced transport of particles from regions of low Lj (or Lcu) to regions of
larger Lj in the QB experiments.

Figure 3 shows the time evolution of the proportion of chaotic or-
bits for all the systems. Fig. 3a shows the time evolution of the percentage of
the particles in orbits characterized as chaotic in the Q model. The solid line
corresponds to a strict criterion of chaoticity, i.e. AI < 10−10. The dashed line
corresponds to a more flexible criterion, including the particles on the transport
lane. About 30% of the particles in the Q model are characterized as chaotic
after 1200 half mass crossing times. A smaller percentage (about 25%) is found
in the case of the C experiment (Fig. 3b). On the other hand, the percentage
of chaotic orbits is much higher if we add a black hole (QB1 and QB2 models,
Figs. 3c,d), being as high as 70% in the case of the model QB2.

An important effect of this large increase of the level of chaos in the QB
experiments is in the distribution of the energies (number density function)
of the various systems. The distribution of all the particles along the energy
axis for the Q experiment is shown in Fig. 4a by a solid line. The dashed line
gives the distribution of the particles of the detected chaotic component. In the
region of small energies (i.e. below the energy level of about −60) no chaotic
orbits were detected by this threshold of chaoticity. The majority of particles
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Fig. 3. The evolution of the percentage of orbits characterazed as chaotic in various
models ((a) Q, (b) C, (c) QB1, (d) QB2). The solid line corresponds to the ”strictly”
chaotic part (AI < 10−10) while the dashed line includes the orbits on the lane. The
different rates of growth reflects the difference in the level of chaos

Fig. 4. (a), (c), (e) The distribution of the total mass (solid line) and of the detected
chaotic part (dashed line) along the energy axis in the Q, C, QB1 model respectively.
(b), (d), (f) The ratio of the number of chaotic orbits to the total number of orbits
at every bin of energy along the energy axis in the Q, C, QB1 model respectively

in chaotic orbits with large binding energies spend most time at large radii and
they mainly contribute in forming the halo of the galaxy. This effect is clearly
seen in Fig. 4b, which gives the relative ratio of particles in chaotic orbits
along the energy axis for the Q experiment.

The same distribution for the C model is seen in Figs. 4c,d. There is a re-
markable difference between the Q and C experiments. In the Q model (Fig. 4b)
the ratio of the detected chaotic orbits to the total number of orbits at every
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energy bin increases almost monotonically. In contrast, in the C model (Fig. 4d)
this ratio has a pronounced maximum at the energy level of ≈ −40 followed by
a minimum around the energy level of ≈ −30. This difference can be explained
by noticing that in the C model there is a good number of ordered 1:1 tube
orbits, at the energy levels around −30. These orbits, together with the chaotic
orbits that have an almost spherical distribution, balance the effect of the box
or box-like orbits, so that the asphericity of the system is reduced to the value
required by the self-consistent equilibrium. On the other hand, in the Q model,
at this energy levels, there is an extensive stable area in phase space correspond-
ing to the 1:1 tube orbits, but it is almost empty, i.e. it is occupied by only a
small number of orbits [2], [3]. At the same energy levels the Q model possesses a
good number of chaotic orbits. These orbits are flexible to follow boxy or circular
geometries but they are almost spherically distributed. Thus they prevent large
departures of the system from sphericity.

If we add a black hole (Figs. 4e,f, model QB1), the chaotic orbits are no
longer limited to small absolute binding energies but their distribution extends
all the way to energies corresponding to the central value of the potential. This
is because the black hole destroys the regular character of most box orbits close
to the center, by causing large deflections of the orbits.

We finally compare the surface densities of the projections of the particles
on various planes for the representative models Q and QB2. Fig. 5a,c shows the
projections of the particles in ordered orbits for the Q experiment on the plane
x-z and y-z respectively, while Fig. 5b,d shows the same projections but for the
particles in chaotic motion. The main conclusion is that the large ellipticity of
this galaxy is due to the regular orbits mainly, while the chaotic component
tends to make the galaxy more spherical. On the other hand, the addition of a
black hole (model QB2, Figs. 6a,b,c,d) has the effect of increasing the number of
chaotic orbits. Thus the galaxy becomes more spherical in the presence of a black
hole. Notice that the projection of regular particles on the plane y-z (Fig. 6c) is
almost spherical. This is due to the fact that regular orbits move mostly at 1:1
tube orbits. For that reason the models with black hole tends to be more oblate.

The combination of the two surface density profiles (regular and chaotic) has
the effect that the logarithmic slope (s(r) = d ln σ(r)

d ln r ) of the overall profile σ(r)
forms an observable hump (Fig. 5e,f,g,h), [10], especially if the surface density
profiles are taken along the shortest axis of the projection. Such a hump may be
an observable signature of chaos in non-rotating elliptical galaxies.

4 Conclusions

We propose a methodology to obtain reliable estimates on the level of chaos in
a self-consistent galactic system. This methodology combines three different nu-
merical methods known in the literature. The combined use of the three methods
provides a solution to the problem of estimation of Lyapunov times despite the
very different periods of particular orbits within a galactic system.
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Fig. 5. The Q model. Projection on the x-z plane of the particles in ordered motion
(a) and of the particles in chaotic motion (b). In (c) and (d) as in (a) and (b), but on
the y-z plane. In (e), (g) is shown the surface density profiles along a slit on the short
axis of each projection in Log-Log scale. In (f), (h) is shown the Logarithmic slope of
the surface density as a function of the distance along the same slit. Solid lines refer to
the total mass, the dashed lines to the mass in ordered motion and the dotted lines to
the mass in chaotic motion, The different slopes of the two components create a hump
at about the half mass radius of the system

The models Q and C (with smooth central density profiles) have chaotic
orbits only at relatively low absolute energies, i.e. at energy levels exceeding the
deepest 30% of the potential well. Below this level most orbits are regular boxes
or box-like. In the Q model, the detected chaotic part is about 30% of the total
mass. This part has a nearly spherical distribution. It imposes limitations on
the maximum ellipticity of the system, despite the fact that only a part less
than about 8% of the total mass moves in chaotic orbits able to develop chaotic
diffusion within a Hubble time. In the C model, the detected chaotic part is
about 25% of the total mass, but only less than 2% can develop chaotic diffusion
within a Hubble time.

Chaos is much more pronounced in the QB models with central black holes,
and it extends to energies reaching the minimum of the potential well. This has
implications on the number of particles in box or 1:1 tube orbits, and it affects
the ellipticity of the systems. The overall proportion of particles in chaotic orbits
reaches as much as 70% in the QB models. The more massive central black hole
model (QB2) produces chaotic orbits with higher values of Lcus, but the limit
of 10−1 is hardly exceeded.

In all the systems, the chaotic components produce different surface density
profiles than these of the rest of the mass. The combination of the two profiles
produces observable signatures of chaos in non-rotating elliptical galaxies.
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Fig. 6. As in Fig. 5, but for the QB2 model. We see that the projection of the particles
in ordered motion forms a nearly spherical distribution because in that case the ordered
motions are mostly 1:1 tube
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Low Frequency Power Spectra and Classification
of Hamiltonian Trajectories
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Abstract. We consider the problem of trajectory classification (as regular or chaotic)
in Hamiltonian systems through power spectrum analysis. We focus our attention on
the low frequency domain and we study the asymptotic behavior of the power spectrum
when the frequencies tend to zero. A low frequency power estimator γ is derived that
indicates the significance of the relative power included by the low frequencies and we
show that it is related to the underlying dynamics of the trajectories. The asymptotic
behavior of γ along a trajectory is qualitatively similar to that of the finite time Lia-
punov characteristic number. The standard map is used as a test model, because it is
a typical model for describing Hamiltonian dynamics.

1 Introduction

Considering a variable x(t) along a trajectory of a dynamical system, its (right
side) power spectrum, defined as

p(f) = lim
T→∞

1
T

∣∣∣∣∣
∫ T

0
x(t)e−i2πftdt

∣∣∣∣∣
2

, f > 0, (1)

yields valuable information about the underlying local dynamics of the sys-
tem. Particularly, Hamiltonian systems, having a 2n-dimensional compact phase
space, exhibit mainly two different types of dynamics, regular and chaotic, which
are associated with qualitatively different power spectra [8, 10, 11]. Regular tra-
jectories are wound on invariant tori, they are quasiperiodic and their power spec-
tra are discrete (in the sense that they are described by few and well separated
spectral peaks). Chaotic trajectories have spectra with more or less “grassy”
background that indicates the existence of continuous spectral components. The
above property is of significant importance in semiclassical dynamics [7]. Another
important property of regular spectra is their invariant character, i.e. spectral
peaks should be located at constant positions for different trajectory time seg-
ments and the fundamental frequencies ωi, i = 1, .., n of a particular torus can be
identified. But instead, chaotic spectra may show substantial changes through
consequential segments indicating the non-existence of a torus. This character-
istic has been proven a very useful tool in the study of long term trajectories in
celestial mechanics [23].

From a theoretical point of view, quasiperiodicity implies spectra that are
composed of lines at frequencies f =

∑n
i=1 miωi, mi ∈ Z, i.e. the frequencies,
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where spectral peaks can appear, form a dense set on the real frequency axis of
the spectrum. In general and under the absence of analytical solutions, trajec-
tories are presented by sampled data for finite time intervals. Therefore, on the
basis of numerical evidence, the distinction between regular and chaotic spectra
becomes quite difficult when it refers to strongly deformed tori or weak chaotic
motion. In [2] is shown that the above distinction, via finite time spectra, is
impossible in principle and the true dynamics is revealed when t → ∞.

Concerning the above intrinsic limitation, it is natural to think about asymp-
totic properties of the spectra for long time trajectory evolution. By increasing
time, lower frequency modes are revealed in the spectrum. Then, the low fre-
quency spectrum domain should be expected to provide a serious indication
for characterizing the underlying dynamics. This paper attempts to handle the
low frequency properties of power spectra obtained for bounded trajectories of
Hamiltonian systems. Instead of calculating the whole power spectrum, the time
evolution of a dynamical quantity γ(t) along a trajectory is examined that reveals
efficiently the requested information.

2 The Low Frequency Domain and Underlying Dynamics

For dynamical variables x(t) that are well-behaving functions (i.e. they evolve
smoothly in time, are bounded and have no singularities) their power spectra
converge exponentially to zero as f → ∞. Thus, we may define a high-frequency
cut-off fH such that p(f) ≈ 0 for f > fH [10]. This is the case independently
on whether the trajectories are regular or chaotic. In a non strict way, the low
frequency domain is defined as the frequency interval L = (0, f0), where f0 �
fH . When a low frequency cut-off fL ∈ L can be defined, such that p(f) converges
to zero when f → 0, then the power spectrum is called convergent, otherwise, is
called divergent. There are indications that these two types of spectra are related
to the type of the underlying dynamics. In [6] it is shown, through reordered
spectra, that the quasiperiodic regime of circle maps corresponds to convergent
power spectra (p(f) ∼ f) while in [4] an exponential convergence is indicated.
In [12] the amplitude of peaks, located at low frequencies, are associated with
the effect of small denominators in the convergence of the classical perturbation
series of near integrable systems. The convergence of these series, which implies
that a torus persists the perturbation, implies also convergent spectra. In [1] it
is mentioned that chaotic trajectories contains a “central peak” in L(fL), which
is a peak with considerable amplitude. Generally, by considering more precise
computations, the “central peak” is proven to be an erratic continuous portion
in the low frequency domain. It’s presence has been ascribed to the existence
of a nearby separatrix trajectory [8, 10]. Additionally, chaotic trajectories may
show 1/fa power spectra (a ≈ 1) even for Hamiltonian systems of few degrees
of freedom. Such behavior suggest the existence of a slow diffusion process [3].

In Fig. 1 the rich dynamics of the standard map

xx+1 = xn + k sin(xn + yn) , yn+1 = xn + yn (mod 2π), (2)
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Fig. 1. The standard map dynamics for k =0.7. Magnifications of the regions R1 and
R2 are shown and the orbits, referred to spectra of Fig.2, are indicated by O1,O2,O3
and O4.

is presented on the plane x − y for k = 0.7. The trajectory O1 is a typical
quasiperiodic trajectory that evolves relatively far from a significant resonance.
The trajectory O2 forms small islands and is located close to the narrow chaotic
zone of the weak resonance 2:9 (region R2 of Fig. 1). The main chaotic region
(O4) is obtained around the unstable fixed point at (0,0). The power spectra
of these trajectories are shown in Fig. 2. Log-Log scales are used in order to
emphasize the low frequency domain. For quasiperiodic trajectories, located far
from significant resonances, discrete peaks constitutes the spectrum (Fig. 2a).
Furthermore, we obtain that the peaks show a rapid decay in amplitude as
f → 0. When a quasiperiodic trajectory evolves on a torus close to a separatrix
manifold, much more peaks are present both at high and low frequency domains
(Fig. 2b). A typical characteristic in this case is the appearance of a family of
peaks in some low frequency domain (e.g. the peaks surrounded by the dotted-
line in Fig. 2b). However, the spectrum is convergent and this is always the case
as long as the underlying dynamics is regular. Figure 2c refers to a trajectory
that evolves inside the homoclinic web of the separatrix at the resonance 2:9 of
width ∆y ≈ 10−4. The low frequency domain shows a continuous distribution
which approximates a Lorentzian spectrum shape [10]. We should note that
this characteristic can not be noticed by using normal scales. Finally, Fig. 2d
corresponds to the trajectory, evolving in the chaotic region around the unstable
fixed point at (0,0). The spectrum seems to follow an 1/fa(a ≈ 0.8) divergence,
but for this and all other trajectories of the standard map examined, the 1/fa-
divergence is limited and the spectrum saturates, i.e. it tends to a constant
nonzero value as f → 0.
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Fig. 2. Typical power spectra (a-d) for the orbits O1,O2,O3 and O4 respectively, shown
in Fig.1.

3 Estimation of the Low Frequency Power
and Asymptotic Characteristics

The asymptotic behavior of the power spectrum as f → 0 can be estimated
by examining the relative power included in L. Considering a power spectrum
p = p(f), its normalized power spectral density at a frequency f = f0 is defined
as

p̂(f0) = lim
∆f→0

1
∆f

Ip(f0 − ∆f/2, f0 + ∆f/2)
Ip(0, ∞)

, (3)

where we have used the notation

Ip(a, b) =
∫ b

a

p(f)df.

Since we are supposed to study the spectrum at low frequencies f0 � 1, we may
take f0 ∈ L and ∆f = f0. Then, by taking into account the high frequency
cut-off fH , we approximate (3) by the quantity

γ∗(f0) =
1
f0

I(f0/2, 3f0/2)
I(f0, fH)

. (4)
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We may consider γ∗(f0) to be a function of time along the particular trajectory
by introducing the “period” T = 1/f0,

γ(T ) = γ∗(f0) , f0 ≡ 1/T. (5)

In average, the power spectra of Hamiltonian trajectories follows profiles (smooth
shapes), which can be described by the form

p̃(f) =
p0

(τf)a + τ2f2 , f > 0, τ > 0, a ∈ (−a0, a0). (6)

For high frequencies (f → ∞), p(f) decays rapidly to zero for any value of the
parameter a, while τ is a frequency scaling factor [10]. For the low frequency
domain we obtain convergent spectra for a < 0, the Lorentzian spectrum form
for a = 0 and 1/fa-divergence for a > 0. It can be shown, that the corresponding
γ estimator, obeys the asymptotic behavior

γ(T ) ∝ T a for T → ∞. (7)

Thus, as T → ∞, γ(T ) approximates the asymptotic behavior of the power
spectrum when f → 0.

Under numerical analysis, the variation of quantities along trajectories is
given as time-series xk. Namely, they are restricted in finite time intervals [0, T ]
and are sampled at equidistant points tk = k∆t, k = 0, 1, ..., N − 1, where N =
[T/∆t]. Then, by applying a discrete Fourier transform (DFT) [9], the right side
power spectrum is approximated by the relation

p(fn) =
|Hn|2
N2 , fn =

n

N∆t
, n = 1, ..., N/2, (8)

where Hn denote the DFT coefficients. By setting Dt = 1, the calculated spec-
trum is restricted in the frequency domain [f1, fN/2], where f1 = 1/N is the low-
est available frequency and fN/2 = 1/2 is the high cutoff (Nyquist frequency).
Then, we may let in (4) f0 = 1/N , fH = 1/2, Ip(f0/2, 3f0/2) = p(f1) and
Ip(f0, fH) =

∑n=N/2
n=1 p(fk). Also, by taken into account the discrete form of the

Parseval’s theorem and writing H1 in its trigonometric form, we obtain

γ(N) =

(
N−1∑
k=0

xk cos(2kπ/N)

)2

+

(
N−1∑
k=0

xk sin(2kπ/N)

)2

N−1∑
k=0

x2
k

, (9)

where N is the length of the trajectory sample that corresponds to integration
time T = N∆t. The formula (9) does not allow the simultaneous calculation for
both the trajectory and the estimator γ. However, γ should be assumed as a
dynamical variable along the trajectory.
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4 Numerical Results and Conclusions

In Fig. 3 the evolution of γ(N), compared to the finite Liapunov characteris-
tic number λ(N) is shown for the same trajectories as that of Fig. 2. For the
calculation of γ(N) we used the time series zn = sin(xn), n = 0, ..., N − 1 in
order to avoid the discontinuity caused by the modulo operation in (2). Cases
(a) and (b) clearly indicate regular dynamics. Both, γ(N) and λ(N) converge
rapidly to zero, almost as 1/N . In case (c), which corresponds to a weakly chaotic
trajectory, we obtain convergence, for both γ(N) and λ(N), which holds dur-
ing that time the orbit is sticky. Afterwards, λ(N) tends slowly to saturation,
while γ(N) shows an abrupt increment indicating that the trajectory entered
the chaotic channel and reveals its chaotic nature efficiently. In case (d) λ(N)
seems to tend at a relatively large value indicating the chaotic character of the
trajectory. The estimator γ(N) shows a remarkable divergence indicating, addi-
tionally, a slow diffusion that is apparent at least up to the integration interval.
Independently of the parameter k, cases (a) and (b) are typical for all regular
trajectories, and, in average, it holds γ ∼ Na with a ≈ 1. It worths to note,
that the convergent evolution of γ(N) is followed by dense sharp peaks, towards
to lower values. Such peaks indicate that the corresponding spectra should be

0 2 4 6

Log N

-10

-8

-6

-4

-2

0

L
og

ã(
N

)
,L

og
ë(

N
)

0 2 4 6

Log N

-10

-8

-6

-4

-2

0

L
og

ã(
N

)
,L

og
ë(

N
)

0 2 4 6

Log N

-10

-8

-6

-4

-2

0

L
og

ã(
N

)
,L

og
ë(

N
)

0 2 4 6

Log N

-2

0

2

4

L
og

ã(
N

)
,L

og
ë(

N
)

ë(Í)

ã(Í)

ë(Í)

ë(Í)

ë(Í)

ã(Í)

ã(Í)

ã(Í)

Fig. 3. The evolution of γ(N) and the finite time Liapunov characteristic number for
the trajectories referred in Fig. 2.
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discrete as, indeed, they are. For chaotic trajectories, the evolution of γ(N) is
quite smooth because of the continuity of the associated spectra.

From Fig. 3 we observe that γ(N) and λ(N) show the same asymptotic char-
acteristics that can be used to classify the trajectories as ordered or chaotic.
Especially for ordered trajectories, γ(N) and λ(N) show a similar decay with
respect to N . For chaotic orbits, γ(N) and λ(N) seem to reach saturation values
in different ways, but nevertheless, we can conclude their non-convergent char-
acter. In Fig. 4 we plot the pairs (γ(N), λ(N)) obtained from 2000 randomly
selected initial conditions for k = 0.9 (crosses) and k = 1 (circles) and after
N = 3 · 106 iterations. The 97% of the points belongs either in the domain
A (regular trajectories) or in the domain B (chaotic trajectories). The rest of
them, which mainly correspond to k = 0.9, may be classified as weakly chaotic
trajectories. By increasing the number of iterations, the points in region A, and,
generally, the points that correspond to ordered motion, move to lower values,
since both γ(N) and λ(N) tend to zero. Therefore, the reliability of the trajec-
tory classification increases as the length of the trajectory increases.

In many cases, γ shows in average Na-divergence, with a ≈ 1. However,
after a long time evolution, γ shows small oscillations around a constant value
γ̄ (saturation). The value of γ̄ is proportional to how long the Na-divergence
takes place and it is associated to the 1/fa-divergence of the spectrum caused
by the slow diffusion through small islands and cantori [8]. Thus, large values of
γ̄ indicate the diffusive character of the trajectory rather than its strong chaotic
evolution. In Fig. 5 we can see that the chaotic orbits, which start near the
unstable fixed point (0,0) for k ≤ 1, correspond to large values for γ̄ (about
104), but, as k increases, we observe that γ̄ → 1. According to the definition of
γ, this value is obtained when the power spectrum has the form p(f) ≈const
(white noise).
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Fig. 4. The (γ(N),λ(N)) graph for 2000 trajectories of the standard map. Points that
belong to regions A or B indicates regular and chaotic dynamics, respectively, with
great certainty.
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Fig. 5. The γ(N) evolution along a chaotic trajectory close to the unstable fixed point
(0,0) and for different values of the mapping parameter k.

Conclusively, we may claim that regular dynamics is associated with conver-
gent spectra, in the sense that p(f) → 0 as f → 0 or, equivalently, γ(T ) → 0 as
T → ∞. Chaos is associated with divergent spectra where p(f) → const.> 0 as
f → 0 or, equivalently, γ(T ) → const.> 0 as T → ∞. In other words, for Hamil-
tonian bounded trajectories, discrete spectra are convergent, while, spectra with
continuous local domains are divergent. Although there is not a rigorous proof,
the numerical results support strongly the above relation.

The low frequency power estimator γ can be used as an indicator for the
qualitative character of a trajectory, in a similar manner to that of the Liapunov
characteristic number λ. These two quantities are expressed in the same units
(time−1) but they have different physical meaning. Namely, γ is associated with
the long term regular or irregular evolution rather than the linear or exponential
divergence of nearby trajectories and is calculated along a single trajectory.
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Low Frequency Power Spectra and Classification
of Hamiltonian Trajectories

George Voyatzis

Department of Physics, University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract. We consider the problem of trajectory classification (as regular or chaotic)
in Hamiltonian systems through power spectrum analysis. We focus our attention on
the low frequency domain and we study the asymptotic behavior of the power spectrum
when the frequencies tend to zero. A low frequency power estimator γ is derived that
indicates the significance of the relative power included by the low frequencies and we
show that it is related to the underlying dynamics of the trajectories. The asymptotic
behavior of γ along a trajectory is qualitatively similar to that of the finite time Lia-
punov characteristic number. The standard map is used as a test model, because it is
a typical model for describing Hamiltonian dynamics.

1 Introduction

Considering a variable x(t) along a trajectory of a dynamical system, its (right
side) power spectrum, defined as

p(f) = lim
T→∞

1
T

∣∣∣∣∣
∫ T

0
x(t)e−i2πftdt

∣∣∣∣∣
2

, f > 0, (1)

yields valuable information about the underlying local dynamics of the sys-
tem. Particularly, Hamiltonian systems, having a 2n-dimensional compact phase
space, exhibit mainly two different types of dynamics, regular and chaotic, which
are associated with qualitatively different power spectra [8, 10, 11]. Regular tra-
jectories are wound on invariant tori, they are quasiperiodic and their power spec-
tra are discrete (in the sense that they are described by few and well separated
spectral peaks). Chaotic trajectories have spectra with more or less “grassy”
background that indicates the existence of continuous spectral components. The
above property is of significant importance in semiclassical dynamics [7]. Another
important property of regular spectra is their invariant character, i.e. spectral
peaks should be located at constant positions for different trajectory time seg-
ments and the fundamental frequencies ωi, i = 1, .., n of a particular torus can be
identified. But instead, chaotic spectra may show substantial changes through
consequential segments indicating the non-existence of a torus. This character-
istic has been proven a very useful tool in the study of long term trajectories in
celestial mechanics [23].

From a theoretical point of view, quasiperiodicity implies spectra that are
composed of lines at frequencies f =

∑n
i=1 miωi, mi ∈ Z, i.e. the frequencies,
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where spectral peaks can appear, form a dense set on the real frequency axis of
the spectrum. In general and under the absence of analytical solutions, trajec-
tories are presented by sampled data for finite time intervals. Therefore, on the
basis of numerical evidence, the distinction between regular and chaotic spectra
becomes quite difficult when it refers to strongly deformed tori or weak chaotic
motion. In [2] is shown that the above distinction, via finite time spectra, is
impossible in principle and the true dynamics is revealed when t → ∞.

Concerning the above intrinsic limitation, it is natural to think about asymp-
totic properties of the spectra for long time trajectory evolution. By increasing
time, lower frequency modes are revealed in the spectrum. Then, the low fre-
quency spectrum domain should be expected to provide a serious indication
for characterizing the underlying dynamics. This paper attempts to handle the
low frequency properties of power spectra obtained for bounded trajectories of
Hamiltonian systems. Instead of calculating the whole power spectrum, the time
evolution of a dynamical quantity γ(t) along a trajectory is examined that reveals
efficiently the requested information.

2 The Low Frequency Domain and Underlying Dynamics

For dynamical variables x(t) that are well-behaving functions (i.e. they evolve
smoothly in time, are bounded and have no singularities) their power spectra
converge exponentially to zero as f → ∞. Thus, we may define a high-frequency
cut-off fH such that p(f) ≈ 0 for f > fH [10]. This is the case independently
on whether the trajectories are regular or chaotic. In a non strict way, the low
frequency domain is defined as the frequency interval L = (0, f0), where f0 �
fH . When a low frequency cut-off fL ∈ L can be defined, such that p(f) converges
to zero when f → 0, then the power spectrum is called convergent, otherwise, is
called divergent. There are indications that these two types of spectra are related
to the type of the underlying dynamics. In [6] it is shown, through reordered
spectra, that the quasiperiodic regime of circle maps corresponds to convergent
power spectra (p(f) ∼ f) while in [4] an exponential convergence is indicated.
In [12] the amplitude of peaks, located at low frequencies, are associated with
the effect of small denominators in the convergence of the classical perturbation
series of near integrable systems. The convergence of these series, which implies
that a torus persists the perturbation, implies also convergent spectra. In [1] it
is mentioned that chaotic trajectories contains a “central peak” in L(fL), which
is a peak with considerable amplitude. Generally, by considering more precise
computations, the “central peak” is proven to be an erratic continuous portion
in the low frequency domain. It’s presence has been ascribed to the existence
of a nearby separatrix trajectory [8, 10]. Additionally, chaotic trajectories may
show 1/fa power spectra (a ≈ 1) even for Hamiltonian systems of few degrees
of freedom. Such behavior suggest the existence of a slow diffusion process [3].

In Fig. 1 the rich dynamics of the standard map

xx+1 = xn + k sin(xn + yn) , yn+1 = xn + yn (mod 2π), (2)
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Fig. 1. The standard map dynamics for k =0.7. Magnifications of the regions R1 and
R2 are shown and the orbits, referred to spectra of Fig.2, are indicated by O1,O2,O3
and O4.

is presented on the plane x − y for k = 0.7. The trajectory O1 is a typical
quasiperiodic trajectory that evolves relatively far from a significant resonance.
The trajectory O2 forms small islands and is located close to the narrow chaotic
zone of the weak resonance 2:9 (region R2 of Fig. 1). The main chaotic region
(O4) is obtained around the unstable fixed point at (0,0). The power spectra
of these trajectories are shown in Fig. 2. Log-Log scales are used in order to
emphasize the low frequency domain. For quasiperiodic trajectories, located far
from significant resonances, discrete peaks constitutes the spectrum (Fig. 2a).
Furthermore, we obtain that the peaks show a rapid decay in amplitude as
f → 0. When a quasiperiodic trajectory evolves on a torus close to a separatrix
manifold, much more peaks are present both at high and low frequency domains
(Fig. 2b). A typical characteristic in this case is the appearance of a family of
peaks in some low frequency domain (e.g. the peaks surrounded by the dotted-
line in Fig. 2b). However, the spectrum is convergent and this is always the case
as long as the underlying dynamics is regular. Figure 2c refers to a trajectory
that evolves inside the homoclinic web of the separatrix at the resonance 2:9 of
width ∆y ≈ 10−4. The low frequency domain shows a continuous distribution
which approximates a Lorentzian spectrum shape [10]. We should note that
this characteristic can not be noticed by using normal scales. Finally, Fig. 2d
corresponds to the trajectory, evolving in the chaotic region around the unstable
fixed point at (0,0). The spectrum seems to follow an 1/fa(a ≈ 0.8) divergence,
but for this and all other trajectories of the standard map examined, the 1/fa-
divergence is limited and the spectrum saturates, i.e. it tends to a constant
nonzero value as f → 0.
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Fig. 2. Typical power spectra (a-d) for the orbits O1,O2,O3 and O4 respectively, shown
in Fig.1.

3 Estimation of the Low Frequency Power
and Asymptotic Characteristics

The asymptotic behavior of the power spectrum as f → 0 can be estimated
by examining the relative power included in L. Considering a power spectrum
p = p(f), its normalized power spectral density at a frequency f = f0 is defined
as

p̂(f0) = lim
∆f→0

1
∆f

Ip(f0 − ∆f/2, f0 + ∆f/2)
Ip(0, ∞)

, (3)

where we have used the notation

Ip(a, b) =
∫ b

a

p(f)df.

Since we are supposed to study the spectrum at low frequencies f0 � 1, we may
take f0 ∈ L and ∆f = f0. Then, by taking into account the high frequency
cut-off fH , we approximate (3) by the quantity

γ∗(f0) =
1
f0

I(f0/2, 3f0/2)
I(f0, fH)

. (4)
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We may consider γ∗(f0) to be a function of time along the particular trajectory
by introducing the “period” T = 1/f0,

γ(T ) = γ∗(f0) , f0 ≡ 1/T. (5)

In average, the power spectra of Hamiltonian trajectories follows profiles (smooth
shapes), which can be described by the form

p̃(f) =
p0

(τf)a + τ2f2 , f > 0, τ > 0, a ∈ (−a0, a0). (6)

For high frequencies (f → ∞), p(f) decays rapidly to zero for any value of the
parameter a, while τ is a frequency scaling factor [10]. For the low frequency
domain we obtain convergent spectra for a < 0, the Lorentzian spectrum form
for a = 0 and 1/fa-divergence for a > 0. It can be shown, that the corresponding
γ estimator, obeys the asymptotic behavior

γ(T ) ∝ T a for T → ∞. (7)

Thus, as T → ∞, γ(T ) approximates the asymptotic behavior of the power
spectrum when f → 0.

Under numerical analysis, the variation of quantities along trajectories is
given as time-series xk. Namely, they are restricted in finite time intervals [0, T ]
and are sampled at equidistant points tk = k∆t, k = 0, 1, ..., N − 1, where N =
[T/∆t]. Then, by applying a discrete Fourier transform (DFT) [9], the right side
power spectrum is approximated by the relation

p(fn) =
|Hn|2
N2 , fn =

n

N∆t
, n = 1, ..., N/2, (8)

where Hn denote the DFT coefficients. By setting Dt = 1, the calculated spec-
trum is restricted in the frequency domain [f1, fN/2], where f1 = 1/N is the low-
est available frequency and fN/2 = 1/2 is the high cutoff (Nyquist frequency).
Then, we may let in (4) f0 = 1/N , fH = 1/2, Ip(f0/2, 3f0/2) = p(f1) and
Ip(f0, fH) =

∑n=N/2
n=1 p(fk). Also, by taken into account the discrete form of the

Parseval’s theorem and writing H1 in its trigonometric form, we obtain

γ(N) =

(
N−1∑
k=0

xk cos(2kπ/N)

)2

+

(
N−1∑
k=0

xk sin(2kπ/N)

)2

N−1∑
k=0

x2
k

, (9)

where N is the length of the trajectory sample that corresponds to integration
time T = N∆t. The formula (9) does not allow the simultaneous calculation for
both the trajectory and the estimator γ. However, γ should be assumed as a
dynamical variable along the trajectory.
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4 Numerical Results and Conclusions

In Fig. 3 the evolution of γ(N), compared to the finite Liapunov characteris-
tic number λ(N) is shown for the same trajectories as that of Fig. 2. For the
calculation of γ(N) we used the time series zn = sin(xn), n = 0, ..., N − 1 in
order to avoid the discontinuity caused by the modulo operation in (2). Cases
(a) and (b) clearly indicate regular dynamics. Both, γ(N) and λ(N) converge
rapidly to zero, almost as 1/N . In case (c), which corresponds to a weakly chaotic
trajectory, we obtain convergence, for both γ(N) and λ(N), which holds dur-
ing that time the orbit is sticky. Afterwards, λ(N) tends slowly to saturation,
while γ(N) shows an abrupt increment indicating that the trajectory entered
the chaotic channel and reveals its chaotic nature efficiently. In case (d) λ(N)
seems to tend at a relatively large value indicating the chaotic character of the
trajectory. The estimator γ(N) shows a remarkable divergence indicating, addi-
tionally, a slow diffusion that is apparent at least up to the integration interval.
Independently of the parameter k, cases (a) and (b) are typical for all regular
trajectories, and, in average, it holds γ ∼ Na with a ≈ 1. It worths to note,
that the convergent evolution of γ(N) is followed by dense sharp peaks, towards
to lower values. Such peaks indicate that the corresponding spectra should be
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Fig. 3. The evolution of γ(N) and the finite time Liapunov characteristic number for
the trajectories referred in Fig. 2.
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discrete as, indeed, they are. For chaotic trajectories, the evolution of γ(N) is
quite smooth because of the continuity of the associated spectra.

From Fig. 3 we observe that γ(N) and λ(N) show the same asymptotic char-
acteristics that can be used to classify the trajectories as ordered or chaotic.
Especially for ordered trajectories, γ(N) and λ(N) show a similar decay with
respect to N . For chaotic orbits, γ(N) and λ(N) seem to reach saturation values
in different ways, but nevertheless, we can conclude their non-convergent char-
acter. In Fig. 4 we plot the pairs (γ(N), λ(N)) obtained from 2000 randomly
selected initial conditions for k = 0.9 (crosses) and k = 1 (circles) and after
N = 3 · 106 iterations. The 97% of the points belongs either in the domain
A (regular trajectories) or in the domain B (chaotic trajectories). The rest of
them, which mainly correspond to k = 0.9, may be classified as weakly chaotic
trajectories. By increasing the number of iterations, the points in region A, and,
generally, the points that correspond to ordered motion, move to lower values,
since both γ(N) and λ(N) tend to zero. Therefore, the reliability of the trajec-
tory classification increases as the length of the trajectory increases.

In many cases, γ shows in average Na-divergence, with a ≈ 1. However,
after a long time evolution, γ shows small oscillations around a constant value
γ̄ (saturation). The value of γ̄ is proportional to how long the Na-divergence
takes place and it is associated to the 1/fa-divergence of the spectrum caused
by the slow diffusion through small islands and cantori [8]. Thus, large values of
γ̄ indicate the diffusive character of the trajectory rather than its strong chaotic
evolution. In Fig. 5 we can see that the chaotic orbits, which start near the
unstable fixed point (0,0) for k ≤ 1, correspond to large values for γ̄ (about
104), but, as k increases, we observe that γ̄ → 1. According to the definition of
γ, this value is obtained when the power spectrum has the form p(f) ≈const
(white noise).
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Fig. 4. The (γ(N),λ(N)) graph for 2000 trajectories of the standard map. Points that
belong to regions A or B indicates regular and chaotic dynamics, respectively, with
great certainty.
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Fig. 5. The γ(N) evolution along a chaotic trajectory close to the unstable fixed point
(0,0) and for different values of the mapping parameter k.

Conclusively, we may claim that regular dynamics is associated with conver-
gent spectra, in the sense that p(f) → 0 as f → 0 or, equivalently, γ(T ) → 0 as
T → ∞. Chaos is associated with divergent spectra where p(f) → const.> 0 as
f → 0 or, equivalently, γ(T ) → const.> 0 as T → ∞. In other words, for Hamil-
tonian bounded trajectories, discrete spectra are convergent, while, spectra with
continuous local domains are divergent. Although there is not a rigorous proof,
the numerical results support strongly the above relation.

The low frequency power estimator γ can be used as an indicator for the
qualitative character of a trajectory, in a similar manner to that of the Liapunov
characteristic number λ. These two quantities are expressed in the same units
(time−1) but they have different physical meaning. Namely, γ is associated with
the long term regular or irregular evolution rather than the linear or exponential
divergence of nearby trajectories and is calculated along a single trajectory.
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Abstract. We study orbits in simplified models of galaxies which consist of two com-
ponents, a disk and a halo. The disk is idealized as razor-thin, though we present
evidence that this simplifying assumption is not critical. We find that the presence of
the disk causes many more resonances than have been found in similar smooth poten-
tials. Those resonances grow at relatively modest values of energy, overlap, and give
rise to many stochastic orbits. A significant range of regular orbits remain and show
smooth KAM curves, even though the discontinuous potential due to the razor-thin
disk means that current versions of the KAM theorem do not apply.

1 Introduction

Many galaxies have a disk component and one or more other components which
are much less flattened. Normal spirals and S0s are examples. Bender et al [1]
have found that many ellipticals can be classified as disky, and that their diski-
ness is consistent with a disk plus bulge model [2]. For simplicity, we use halo as
an all-embracing term to describe the whole non-disk component. Orbits of halo
stars in such galaxies will necessarily cross back and forth through the disk. As
they do, they will experience a fairly abrupt change in the gravitational force
field. This paper examines how these changes in the force field affect the dynam-
ics of the orbit. It is a topic which seems to have attracted very little attention
so far, with two notable exceptions. Ostriker, Spitzer, and Chevalier [3] have
discussed the effect that the compressive gravitational shocks, caused by pas-
sage through the disk, have on the internal structure of globular clusters. Our
interest is on how that passage affects the orbits of individual stars of the halo
population, on the resonances which they can cause, and on the extent to which
they can induce chaos. This issue was also studied in the 1970s by L. Martinet
and co-authors [4]–[7] who integrated orbits in Schmidt’s [8], [9] two models of
the Galaxy. These models have highly flattened disk components.

We shall use simple models which have both disk and halo components. These
are the Kuzmin-like potentials which were introduced recently by Tohline and
Voyages [10]. Their disk components are razor-thin. We describe their potentials
and densities in Sect. 2, and their dynamics in Sect. 3. Numerical integrations are
needed to study the detailed properties of orbits. We describe the results of those
integrations in Sect. 4. In Sect. 5 we show, again by means of orbit integrations,
that our findings do not depend critically on the simplifying approximation that
the disk component is razor-thin. Sect. 6 sums up, and relates our findings to
other work.
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O

z

R

Fig. 1. The thin solid lines in z > 0 are equipotential surfaces above Kuzmin’s disk.
They are circles in (R, z)-space centered on an image mass at z = −a, which is shown
as a small open circle. The equipotentials in z < 0 are their reflections in the disk z = 0

2 Models

2.1 Kuzmin’s Disk

Kuzmin’s disk [11], [3] is a flat density distribution with the remarkable property
that the gravitational potential above it is that due to a point mass at a distance
a below it, while the potential below it is that due to a point mass at a distance
a above it. Its gravitational potential is

Φ =
−GM√

R2 + (a + |z|)2 , (1)

when z = 0 is the plane of the disk, and R measures radial distance from the z-
axis of symmetry. Its equipotential surfaces are spherical, those in z > 0 centered
on the point mass below the disk, and those in z < 0 on the point mass above
the disk.

2.2 Kuzmin-Like Potentials

Kuzmin’s disk is a particular case of the more general Kuzmin-like potentials of
Tohline and Voyages [10], for which

Φ = Φ(ξ), ξ =
√

R2 + (a + |z|)2. (2)

They have the same spherical equipotential surfaces as Kuzmin’s disk, with
centers of force on the opposite side of the z = 0 plane, but a force law which is
more general than the inverse-square of Kuzmin’s disk. The variable ξ measures
distance from the centers of force. Poisson’s equation shows that the potential
(2) is generated by a density

� =
1

4πG
∆Φ =

1
4πG

[
Φ′′(ξ) +

2[1 + aδ(z)]
ξ

Φ′(ξ)
]

. (3)
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The Dirac delta function δ(z) arises from derivatives of |z| because ∂|z|/∂z =
sgn(z), and ∂ sgn(z)/∂z = 2δ(z). Kuzmin-like potentials therefore arise from a
volume density which is stratified on the equipotentials, together with a sur-
face density σ = aΦ′(ξ)/2πGξ on the plane z = 0. It is this surface density
which causes the z-component of force to be discontinuous. The volume density
vanishes for the special case of Kuzmin’s disk, and there is then only a surface
density � = aMδ(z)/2π(a2 + R2)3/2.

The choice of a specific spherical potential Φ(ξ) fixes both the volume and
the surface densities. One way of judging their relative significance is to compute
the mass of each component interior to some equipotential ξ = ξ0. Using the
geometric formula of 4πξ(ξ − a) for the surface area of the two part-spheres
which form the equipotential of constant ξ, we obtain

Mdisk(ξ0) =
a

G
[Φ(ξ0) − Φ(a)] , Mtotal(ξ0) =

ξ0

G
(ξ0 − a)Φ′(ξ0), (4)

for the disk and total mass interior to the equipotential ξ = ξ0.

2.3 The Logarithmic Kuzmin-Like Potentials

As an example, we shall investigate the logarithmic potential which is widely
used as a model in galactic dynamics [3]. It gives a Kuzmin-like model with
potential and density

Φ(ξ) = V 2
0 ln ξ, � =

V 2
0

4πGξ2 +
aV 2

0 δ(z)
2πG(R2 + a2)

. (5)

As (4) shows, the mass in the disk grows logarithmically with increasing distance
whereas the total mass grows linearly. The ratio of these masses is

Mdisk(ξ0)
Mtotal(ξ0)

=
a

(ξ0 − a)
ln

(
ξ0

a

)
, (6)

and the relative significance of the disk diminishes with increasing ξ0. Orbits
at higher energies and greater distances experience forces for which the halo
is increasingly dominant. Figure 2-a shows how isophotes would appear when
viewed at a small angle from edge-on, assuming the same mass-to-light ratio for
all mass.

3 Dynamics

Motion in a spherical potential conserves the energy E and the angular momen-
tum vector about the center. The motion is integrable and is confined to the
plane through the center of force that is perpendicular to the angular momen-
tum vector. Unless confined always to the plane z = 0, an orbit in a Kuzmin-like
potential passes continually back and forth between the regions z > 0 and z < 0,
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Fig. 2. (a) Projected density of a logarithmic Kuzmin-like model (5), assuming the
same mass-to-light ratio for all mass, when viewed at 5◦ from edge-on (left). Con-
tour levels decrease by factors of 10−1/3. The projected disk density is infinite when
viewed edge-on, and the isophotes become increasingly less pointy as the viewing angle
increases. (b) Projected density of the same model after thickening with b = 0.5 as
described by (12) in Sect. 5 when viewed edge-on. The centermost contours and suc-
cessive outer ones represent the same levels as in (a). Thickening spreads density out
from the disk, giving higher volume densities; the level of the outermost contour of (b)
matches the next to outermost of (a)

and hence from one spherical potential field to the other. Different angular mo-
menta are conserved in the two regions. Both are described by the vector

J = [r + a sgn(z)k] × v, (7)

where r is the position relative to the origin, v is velocity, and k is the unit
vector in the z-direction. An equation of motion for J can be derived from the
equations of motion in the Kuzmin-like potential. They are

dr
dt

= v,
dv
dt

= −∇Φ = − [r + a sgn(z)k]
ξ

Φ′(ξ). (8)

It follows that

dJ
dt

= [r + a sgn(z)k] × dv
dt

+ v × v + 2aδ(z)(k × v)
dz

dt
= 2aδ(z)(k × v)

dz

dt
. (9)

This equation confirms the constancy of the vector J except when the orbit
crosses the disk. Then J changes discontinuously by an amount ±2a(k × v)
unless k × v = 0, that is unless the orbit is then travelling perpendicularly to
the disk. The change in J is always perpendicular to the z-direction because the
z-component Jz of J is conserved; Jz is the angular momentum about the axis
of symmetry, and is a constant of the motion, as in any axisymmetric potential.
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Since it is known that energy and angular momenta are the only constants
of motion in general spherical potentials and, as we have seen, neither Jx nor
Jy are conserved for general Kuzmin-like potentials, it follows that, contrary
to what is stated in [10], Kuzmin-like potentials are not generally integrable.
Kuzmin’s disk is exceptional, its potential is Stäckel, and so all orbits in it
are integrable. Their integrability relies on the Keplerian nature of its spherical
potentials; motions then have an extra integral of motion, the Laplace-Runge-
Lenz vector [13], in addition to energy and angular momentum. The Laplace-
Runge-Lenz vector changes discontinuously across the disk too. However, there is
a linear combination of its z-component and J2 for which the two discontinuities
cancel [14], and this combination provides Kuzmin’s third integral [11]. (Another
exceptional case is that of a harmonic potential Φ ∝ ξ2. It is not generally
relevant for galaxies, except as an approximation for orbits which remain close
to the center of the disk.)

Because position and velocity of an orbit are continuous as the disk is crossed,
the tangent to an orbit changes smoothly. The hallmark of the discontinuity in
the gravitational force is a discontinuity in the curvature of an orbit. Fig. 3-a
gives the clearest example of this feature. It shows a particular Jz = 0 periodic
polar orbit in the potential due to Kuzmin’s disk. The orbit in z < 0 is part of
an ellipse with focus at the center of force in z > 0. This ellipse is oriented such
that the orbit is travelling directly away from the center of force in z < 0 as it
crosses to z > 0. Hence its trajectory in z > 0 remains a straight line away from
the lower center of force. The orbit travels along that line until it reaches the
maximum extent which its energy allows, after which it returns and retraces its
path.
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Fig. 3. The simplest periodic disk-crossing polar orbits for Kuzmin’s disk: (a) a box or-
bit, which is a banana in the terminology of Binney [15] and a boxlet in the terminology
of Miralda-Escudé and Schwarzschild [16], and (b) an ellipse, for energy E = −GM/3a.
The open circles again denote the image masses as in Fig. 1. Similarly shaped periodic
orbits occur for other Kuzmin-like potentials. The banana boxlet has a twin, which is
its mirror image in z = 0.
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4 Orbits

4.1 Orbits in Kuzmin’s Disk

Orbits with Jz �= 0 are short-axis tubes. Polar orbits with Jz = 0, which lie
in planes through the axis of symmetry, may be either boxes or loops. At low
energies −1 < E < −GM/2a for which the orbit along the z-axis is stable, only
box orbits occur. Loop orbits become possible at higher energies in the range
−GM/2a < E < 0 for which the z-axis orbit has become unstable [14] The
parent of the loop orbit family is a closed ellipse, as shown in Fig. 3-b. It is
not quite a Keplerian ellipse because the orbit is always under the influence of
a point mass at the more distant focus. Rather it is the union of two slower
halves of a Keplerian ellipse. Although there are box orbits for all energies,
the type of banana boxlet shown in Fig. 3-a occurs only for the energy range
−GM/2

√
2a ≤ E < 0. The curved part of the orbit is a quarter circle for

the lower limit of energy, and so is nearly circular for the case illustrated. Its
eccentricity increases as E increases, and the linear parts, which extend to a
distance −GM/E from the lower center of force, lengthen.

4.2 Orbits in Kuzmin-Like Potentials

In the following subsections, we present numerical results for the logarithmic po-
tential (5) using z = 0 surfaces of section. Surfaces of section for Kuzmin’s disk
can be found analytically as contours on which the third integral is constant,
but numerical integration is needed for Kuzmin-like potentials. We computed
orbits by a variant of the method described in Appendix A.1 of Hunter et al [17]
which integrates accurately from one crossing of z = 0 to the next using polar
coordinates in (z, vz)-space. No interpolation is used to find when crossings oc-
cur, and there is no uncertainty as to which force formula to use. The surfaces
of section for the logarithmic potential (5) contain resonant island chains and
stochastic as well as regular regions. They stand in marked contrast to the reg-
ular surfaces of section for Kuzmin’s disk, for which the only significant feature
is the bifurcation when loops first appear with polar orbits. Surfaces of section
are plotted for specific values of energy and angular momentum Jz about the
axis of symmetry. We express Jz as a fraction k of the angular momentum of the
circular orbit in the z-plane., i.e. the maximum possible Jz for the given energy.
We use a as unit of length, and for ease of understanding, identify energies by
Rc, the radius of a circular orbit at that energy. In terms of Rc, the energy is

E =
1
2

[
ln(R2

c + 1) +
R2

c

R2
c + 1

]
. (10)

For the unbounded potential (5), E ≥ 0, and Rc increases monotonically with
the energy, first as Rc ≈ √

E for small E, but later as Rc ≈ eE for large E. We
label periodic orbits by the ratio m : n where m and n are the numbers of the
full cycles in z and R (or x in the case of polar orbits) respectively, in a complete
cycle.
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Fig. 4. (a) Surface of section for polar orbits in the logarithmic potential (5) for Rc = 1,
(b) Surface of section for axisymmetric orbits in the same potential and at the same
energy, and with k = 0.1, i.e. angular momentum 0.1 of that for a circular orbit at this
energy

Polar Orbits

Only box orbits occur at low energies, and (x, vx) surfaces of section mostly show
smooth rings centered on the z-axis orbit at (0, 0). However bifurcations do occur
before the z-axis orbit becomes unstable at Rc = 1.37. Figure 4-a for Rc = 1
shows three rings of island chains. The prominent middle ring is due to the
2 : 1 banana boxlets, and their unstable figure-of-eight companion. These orbits
bifurcate from the z-axis orbit when Rc = 0.62. Initially their paths lie close to
the z-axis, but their initial island chain cuts the z-axis at z = 0.35, and is clearly
removed from (0, 0). The smooth curves surrounding (0, 0) remain, indicating
that the stability of the z-axis orbit is unaffected by this bifurcation. The outer
narrow ring corresponds to 3 : 1 orbits. They bifurcate from the z-axis orbit at a
lower energy when Rc < 0.45. The inner narrow ring corresponds to 3 : 2 orbits
of a well-known type; an unstable fish and a stable antifish [16]. A separatrix
between box and loop orbits is formed once the z-axis orbit becomes unstable at
Rc = 1.37, and a visible stochastic region develops around the separatrix [18].
Figure 5 shows that resonant islands take up a significant part of the box orbit
region at Rc = 3. The 2 : 1 banana boxlet at x = 1.84, vx = 1.15 is still
prominent, while the 3 : 2 family with periodic points at x = 2.54, vx = 0.79 and
x = 0, vx = 1.14 has grown in significance. Figure 6 shows that most of the box
orbit region has become stochastic when energy has increased to Rc = 10, as a
result of substantial overlapping of the resonant regions which are so prominent
in Fig. 5. There are many resonant islands in Fig. 6, and even islands within
islands, but the stochastic sea dominates the outer part of the surface of section.
The island for the banana boxlets, which is here centered on x = 3.2, vx = 1.7,
has moved further outwards and become thinner. The outward migration is due
to the fact that these orbits become flatter with increasing energy; the outer
boundary of the surfaces of section is the orbit which is always in the plane
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z = 0. A few box orbits remain in the outer parts of the surface of section. They
too are flat and never depart far from the z = 0 plane.

Fig. 5. Surface of section for polar orbits in the logarithmic potential (5) for Rc = 3

Fig. 6. Surface of section for polar orbits in the logarithmic potential (5) for Rc = 10
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Fig. 7. (a) Stable and unstable 2 : 2 orbits, full and broken lines respectively, which
occupy the centermost chain of islands in Fig. 6. The reflection of the unstable orbit in
z = 0 gives another unstable 2 : 2 orbit. (b) The stable and unstable 2 : 4 orbits, full
and broken lines respectively, which occupy the centermost chain of islands in Fig. 11

While the box orbit region is becoming stochastic, the loop orbit region,
centered around the 1 : 1 periodic closed loop, remains largely regular, though
with some resonant islands. The first out from the center and most prominent
in Fig. 6 are due to the 2 : 2 periodic orbits whose three-petalled rosette form is
shown in Fig. 7-a.

Delay Plots of Angular Momentum provide a third way of analyzing orbits
in Kuzmin-like potentials, which supplement plots in position space and surfaces
of section. While the orbit is above the disk, Jy is its angular momentum about
the lower center of force, and remains constant. The next time the orbit returns
to z > 0, it has a new value of Jy, except for exceptional cases such as the
elliptical orbit of Fig. 3-b. The sequence of successive values of Jy characterizes
an orbit, and generates a delay plot, similar to those used for analyzing time
series generated by other dynamical systems [19] [20], in which two successive
values are plotted as a point, the earlier value giving the abscissa and its successor
the ordinate. Figure 8 displays Jy delay plots for four orbits which are included
in the surface of section of Fig. 6. The physical forms of the first three are shown
in Fig. 9. The orbits are arranged by decreasing stochasticity and increasing
regularity. Orbit (a) inhabits the stochastic region just outside the regular central
core of loop orbits. The points in its delay plot are scattered fairly uniformly.
Figure 9-a shows that it almost fills the area within the zero-velocity curve, apart
from narrow slivers near the left and right edges. Orbit (b) from well inside the
stochastic region fills less than half the region within the zero-velocity curve. Its
delay plot shows much randomness, but also a double ring structure. Orbit (c)
is something of a surprise because it seems to start in a stochastic region, yet
its delay plot is highly ordered. Its pretzel shape as seen in Fig. 9-c shows it to
belong to the family of 4 : 3 periodic orbits parented by the periodic orbit which
crosses the surface of section of Fig. 6 at (0.81, 1.42) and (6.38, 1.21). Orbit (c)
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Fig. 8. Jy delay plots for four Rc = 10 polar orbits. Jy(n) is the value of Jy during
the n-th passage through z > 0. The orbits start in z = 0 from (a) x = 2, vx = 1, (b)
x = 1, vx = 1.7, (c) x = 4, vx = 1.4, (d) x = 0, vx = 2.25

Fig. 9. Orbits for first three delay plots of Fig. 8, after 200 crossings of z = 0. The
outer boundary is the zero-velocity curve

generates the set of broken lines which surrounds the four island chain around
(0.81, 1.42), and broken lines appear in its delay plot too. The starting point of
this orbit at (4, 1.4) lies at the left end of a long and narrow island surrounding
the other periodic point at (6.38, 1.21). That island is lost in the complexity of
Fig. 6. Finally, orbit (d) is a regular box orbit which gives a smooth curve around
the outer part of the surface of section. Its delay plot is also smooth and regular.
Being close to the outer boundary, this orbit is a flat box which stays close to
the disk at all times.
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Axisymmetric Orbits

The surfaces of section Fig. 4-b, Fig. 10, and Fig. 11 for the same three energies
of Rc = 1, 3, and 10, respectively, and for Jz angular momenta which are one-

Fig. 10. Surface of section for axisymmetric orbits in the logarithmic potential (5) for
Rc = 3 and k = 0.1

Fig. 11. Surface of section for axisymmetric orbits in the logarithmic potential (5) for
Rc = 10 and k = 0.1
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tenth of the maximum possible (k = 0.1) show similar trends with increasing
energy to the corresponding figures for polar orbits. The predominant class of
regular orbits are short axis tubes [14]. They give the smooth rings surrounding
the center which represents a thin tube or shell. Figure 4-b shows a prominent
island at the lowest energy. This is due to the 1 : 1 saucer orbit [21] which is
obtained when the angular momentum barrier stops a banana orbit before it gets
to the z-axis and reflects it back along its path after its first crossing of the disk.
The Rc = 3 surface of section in Fig. 10 shows its outer part to be occupied by
resonant island chains. Those resonances have overlapped when the energy has
increased to Rc = 10, and most of the outer part is stochastic. However there
is a large regular core with a prominent island chain. That chain corresponds
to the axisymmetric counterparts of the 2 : 2 rosettes of the polar case. The
angular momentum barrier truncates and reflects these orbits to give the 2 : 4
orbits shown in Fig. 7-b, a stable spaceship and an unstable pair of twisted fish.
Note that this island chain is present already as the innermost island chain in
Fig. 10 for the lower energy of Rc = 3. There is a difference in that there the
unsymmetric twisted fish are stable, and the spaceship is unstable.

Delay plots can be constructed for this case too, using the quantity J2
x + J2

y

which is now constant during each passage through z > 0. Figure 12 shows delay
plots for two orbits from the outer stochastic part of Fig. 11. The left delay plot
shows wide scattering, with some concentration at the boundaries, and an empty
hole at the top right, while the right plot shows far less scattering. Figure 13
shows that neither orbit comes close to filling the region within the zero-velocity
curve. Orbit (b) with the more organized delay plot, ranges more widely, but
less randomly, than orbit (a).
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Fig. 12. J2
x + J2

y delay plots for two Rc = 10, k = 0.1 axisymmetric orbits. The orbits
start in z = 0 from (a) R = 1, vR = 1.7, (b) R = 1.6, vR = 1
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Fig. 13. Orbits for the two delay plots of Fig. 12 after 200 crossings of z = 0. The
outer boundary is the zero-velocity curve

5 Thickened Disks

We have so far been investigating force fields which have sharp discontinuities.
That is an idealization of a galaxy with a disk-like component, and so one must
wonder how critically do the results which we have found depend on the assump-
tion of an abrupt discontinuity. We investigate this issue by thickening the disk,
borrowing a device introduced by Miyamoto and Nagai [22]. We add a length b,
which is zero in the limit of a razor-thin disk, to the definition of the variable ξ
on which the potential depends, so that now

Φ = Φ(ξ), ξ =
√

R2 + (a +
√

z2 + b2)2. (11)

This potential is due to the density field

� =
1

4πG

[
Φ′′ +

2Φ′

ξ
+

ab2Φ′

ξ(z2 + b2)3/2 − b2

ξ

(
Φ′′

ξ
− Φ′

ξ2

) (
1 +

a√
z2 + b2

)2
]

.(12)

The first three components give the density (3) in the limit b → 0 when b2/(z2 +
b2)3/2 → 2δ(z). The right half of Fig. 2 shows contours of the projected density
(11) for the logarithmic potential of (5) when viewed edge-on. Comparison with
the unthickened case in the left half shows that there has been a considerable
lowering of density contrasts. Even though ξ can no longer be interpreted as
a specific distance, it does tend to a radial distance at large distances where
most of the equipotentials become quite spherical. Despite the changes in the
potential for the displayed case of b = 0.5, which is not much smaller than the
displacements a = 1 of the former centers of force, yet the Rc = 10 surface of
section shown in Fig. 14 shows no significant qualitative differences from the
b = 0 case of Fig. 11. In fact much of the microstructure persists. For example,
the small island around (2.21, 1.49) in Fig. 14 and that around (2.11, 1.46) in
Fig. 11 are due to similarly shaped 7 : 10 orbits, and the narrow tadpoles around
(1.11, 1.71) in Fig. 14 and (0.92, 1.62) in Fig. 11 are due to similar 5 : 6 orbits.
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Fig. 14. Surface of section for axisymmetric orbits for Rc = 10 and k = 0.1, as in
Fig. 11 but for a thickened potential with b = 0.5

6 Discussion and Conclusions

6.1 Related Work

This work adds another example to those already known in which chaos is in-
duced when orbits pass between two or more regions, in each of which the
motion is integrable, but in which different integrals apply. One that has at-
tracted considerable attention in recent years is that of a black hole at the center
of an otherwise smooth-cored triaxial galaxy. Shortly after de Zeeuw [14] had
shown how Stäckel potentials account nicely for the major orbit families which
Schwarzschild [23] had found in his numerical integrations of a smooth-cored
triaxial galaxy, Gerhard and Binney [24] showed how destructive a central black
hole, or cusp, would be for box orbits which came close to it. Motion near the
black hole is nearly Keplerian, as has been discussed in detail by Sridhar and
Touma [25].

Transitions between regions in which different integrals apply are basic to the
mapping constructed by Wisdom [26] to explain the Kirkwood gaps in the aster-
oid belt. His mapping concentrates high-frequency perturbations by Jupiter into
a periodic sequence of impulses which modify the motion periodically. Between
impulses, the motion is determined entirely by secular terms which describe an
integrable system. Touma and Tremaine [27] have applied a similar mapping
in galactic dynamics. They study eccentric orbits in a plane non-axisymmetric
potential using a map obtained by concentrating the non-axisymmetry so that
it acts impulsively at apocenters of orbits. Between successive apocenters the
non-axisymmetry is ignored and the orbital motion is integrable.
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From a mathematical perspective, this work adds another instance in which
there is evidence that KAM curves occur, even though the conditions for which
the KAM theorem has been proved are not satisfied. Moser’s [28] proof of that
theorem has been refined to the case of continuous derivatives through to third
order. Yet Kuzmin-like potentials have discontinuous first derivatives. Like the
example of Varvoglis [29], ours comes directly from a significant physical context.
Many studies in which KAM curves have been found for Hamiltonians which
lack the smoothness required by Moser’s proof, such as that of Benettin and
Strelcyn [30] have studied variants of the billiard ball problem introduced by
Birkhoff [31].

6.2 Conclusions

Our largely numerical study of orbits in Kuzmin-like potentials has shown that
Kuzmin’s disk is not typical. Its out-of-plane orbits are all integrable, despite the
abrupt changes in the angular momentum vector which occur whenever the disk
is crossed. Other Kuzmin-like models (other than the simple case in which the
potential is harmonic) are not integrable. The presence of the disk causes many
more resonances than have been found in similar smooth potentials [32] [17].
Those resonances grow at relatively modest values of energy, overlap, and give
rise to many stochastic orbits for which the disk crossings may scatter the angular
momentum vector fairly randomly. The extent of the stochasticity grows with
increasing energy and decreasing angular momentum. However, there are many
orbits which remain regular despite the impulsive changes due to crossing the
disk. We have investigated only a very limited class of Kuzmin-like models, and
Kuzmin-like models are themselves special because they do not permit the disk
density to be adjusted independently of the volume density. Yet it is hard to see
why similar mechanisms will not induce stochasticity in disk-crossing orbits in
galaxies with disks of substantial size. The similar results from our even more
limited tests with thickened Kuzmin-like potentials, for which the disk is not
a sharp discontinuity and for which the motion is not integrable outside the
disk, is evidence of the likely robustness of our findings. Martinet et al [4]–[7]
investigated quite different models. Some of their surfaces of section show large
stochastic regions, more extensive than any we display, and even instances in
which the central periodic orbit of an axisymmetric case has become unstable.
Because the models are so different, no detailed comparison of our results with
theirs is possible.

Although we drew a distinction in Sect. 1 between our interest in orbits and
that of Ostriker et al [3] on the internal structure of globular clusters, that dis-
tinction may be somewhat fuzzy. The occurrence of chaos is commonly ascribed
to sensitivity to initial conditions, when small changes in initial conditions lead
to greatly different outcomes [20]. The calculations in [3] are based on changes
in the relative motion of two nearby points of a cluster caused by disk shock-
ing. Orbits of nearby points in a stable cluster are nearby when viewed on the
galactic scale. They grow far apart if and when the cluster disrupts. Our work
finds that there are substantial regions of phase space in which orbits remain
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regular. In them nearby orbits diverge only gradually from each other, whereas
they diverge rapidly from each other in stochastic regions. This implies that the
vulnerability of a globular cluster to disk shocking is likely to depend consid-
erably on its orbit This matches what Aguilar, Hut, and Ostriker [33] indeed
find; that disk shocking is much more destructive of globular clusters on highly
elongated radial orbits.
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Chaos and Chaotic Phase Mixing in Galaxy
Evolution and Charged Particle Beams
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Abstract. This paper discusses three new issues that necessarily arise in realistic
attempts to apply nonlinear dynamics to galaxy evolution, namely: (i) the meaning
of chaos in many-body systems, (ii) the time-dependence of the bulk potential, which
can trigger intervals of transient chaos, and (iii) the self-consistent nature of any bulk
chaos, which is generated by the bodies themselves, rather than imposed externally.
Simulations and theory both suggest strongly that the physical processes associated
with galactic evolution should also act in nonneutral plasmas and charged particle
beams. This in turn suggests the possibility of testing this physics in real laboratory
experiments, an undertaking currently underway.

1 Introduction

As recently as 1990, most galactic dynamicists ignored completely the possible
role of chaos in galaxies. However, the past decade has seen a growing recognition
that chaos can be important in determining the structure of real galaxies. Still,
much recent work involving chaos in galactic astronomy has been simplistic in
that it has involved naive applications of standard techniques from nonlinear dy-
namics developed to analyse two- and three-degree-of-freedom time-independent
Hamiltonian systems. The object here is to discuss some of the additional com-
plications which arise if nonlinear dynamics is to be applied to real galaxies,
which are many-body systems comprised of a large number of interacting masses
and characterised by a self-consistently determined bulk potential which, during
their most interesting phases, can be strongly time-dependent.

2 Transient Chaos and Collisionless Relaxation

2.1 Transient Chaos Induced by Parametric Resonance

It is well known to nonlinear dynamicists that the introduction of an oscilla-
tory time-dependence into even an otherwise integrable potential can trigger an
interval of transient chaos, during which many orbits exhibit an exponentially
sensitive dependence on initial conditions. Physically, this transient chaos arises
from a resonance overlap between the frequencies ∼ Ω of the unperturbed orbits
and the frequency or frequencies ∼ ω of the time-dependent perturbation.

In the past, the possible effects of such chaos have been considered for both
nonneutral plasmas [1] and charged particle beams [2]. More recently, such tran-
sient chaos has also begun to be considered in the context of galactic astron-
omy [3]. That work has shown that, for large fractional amplitudes, > 0.1 or
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so, this resonance can be very broad, triggering significant amounts of chaos for
10−1 ≤ ω/Ω ≤ 10; and that the existence of the phenomenon is robust, compar-
atively insensitive to details. It will, for example, persist if one allows for damped
oscillations and/or modest drifts in frequency (generated, e.g., by making ω a
random variable sampling an Ornstein-Uhlenbeck colored noise process).

The breadth of the resonance and the insensitivity to details suggest that
transient chaos could well prove common, if not generic, in violent relaxation [4],
the collective process whereby a (nearly) collisionless galaxy or galactic halo
evolves towards an equilibrium or near-equilibrium state. Violent relaxation typ-
ically involves damped oscillations triggered, e.g., by interactions with another
galaxy or, in the early Universe, by the cosmological details preceding galaxy
formation. However, when considering collective effects there is only one natural
time scale, the dynamical time tD ∼ 1/

√
Gρ, with ρ a typical mass density, which

determines both the characteristic orbital time scale and (at least initially) the
oscillation time scale. The exact numerical values of these time scales will involve
numerical coefficients which will in general be unequal and vary as a function
of location within the galaxy. If, however, one need only demand that the oscil-
lation and orbital time scales agree to within an order of magnitude, it would
seem likely that this resonance could trigger transient chaos through large parts
of the galaxy. In real galaxies the oscillations will presumably damp and the
frequencies drift as the density changes and, presumably, power cascades from
longer to shorter scales. To the extent, however, that the details are unimportant
such variations should not obviate the basic effect.

2.2 Chaotic Phase Mixing and Collisionless Relaxation

But why might such transient chaos prove important in galactic evolution? De-
tailed numerical simulations indicate that violent relaxation can be a very rapid
and efficient process, but simple models involving regular orbits, such as Lynden-
Bell’s [4] balls rolling in a pig-trough, do not approach an equilibrium nearly fast
enough [5]. The important point, however, is that allowing for the effects of chaos
can in principle dramatically accelerate both the speed and efficacy of violent
relaxation. An initially localised ensemble of regular orbits evolved into the fu-
ture in a time-independent potential will begin by diverging as a power law in
time and, only after a very long period, slowly evolve towards a time-averaged
equilibrium, i.e., a uniform population of the KAM tori to which it is restricted.
By contrast, a corresponding ensemble of chaotic orbits will begin by diverging
exponentially at a rate that is comparable to a typical value of the largest fi-
nite time Lyapunov exponent for the orbits in the ensemble; and then converge
exponentially towards an equilibrium or near-equilibrium state at a somewhat
smaller, but still comparable, rate. The exponential character of this chaotic
phase mixing means that the time scale associated with this process is typically
far shorter than the time scale associated with regular phase mixing [6–8].

It is evident that chaotic phase mixing in a time-independent Hamiltonian
system can trigger a very rapid approach towards an equilibrium, but this does
not necessarily ‘explain’ violent relaxation. If, e.g., most of the orbits in the
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system are regular, it would seem unlikely that chaotic phase mixing could be
sufficiently ubiquitous to explain an approach towards a (near-)equilibrium for
the galaxy as a whole. Indeed, one would expect that, for a galaxy that is in or
near equilibrium the relative measure of chaotic orbits should be comparatively
small: If the galaxy exhibits nontrivial structures like a bar or a cusp, the types
of structures which one has come to associate with chaos, one would also expect
large numbers of regular orbits must be present to serve as a ‘skeleton’ to support
that structure [9]. Moreover, it is evident that, although chaotic mixing in a
time-independent potential can be very efficient in mixing orbits on a constant
energy surface, the energy of each particle remains conserved, so that there can
be no mixing in energies. The extent to which chaotic phase mixing in a time-
dependent potential will trigger an efficient shuffling of energies is not completely
clear.

The important point, then, is that chaotic phase mixing associated with
transient chaos in a time-dependent potential is likely to explain these remain-
ing lacunae. At least for large amplitude perturbations, (say) 10% or more, this
parametric resonance can trigger a huge increase in the relative abundance of
chaotic orbits so that, for pulsation frequencies near the middle of the reso-
nance, virtually all the orbits exhibit substantial exponential sensitivity. More-
over, given that this chaos involves a resonant coupling, it tends typically to
cause a substantial shuffling of energies: those frequencies which are most apt to
trigger lots of chaos are also apt to induce the largest shuffling of energies.

Still it should be noted that one can get a ‘near-complete’ shuffling of orbits
on different constant energy surfaces even if the orbital energies are not especially
well shuffled. This, however, is not necessarily a problem. Simulations of systems
exhibiting efficient collective relaxation do not necessarily involve masses which
completely ‘forget’ their initial conditions. Rather, comparatively efficient and
complete violent relaxation is completely consistent with an evolution in which
masses ‘remember’ (at least partially) their initial binding energies, i.e., in which
masses that start with comparatively large (small) binding energies end up with
comparatively large (small) binding energies [10].

That it may be possible to achieve efficient chaotic phase mixing in an os-
cillating galactic potential while still relaxing towards a nearly integrable state
within 10tD or so is illustrated in Fig. 1. This Figure was generated from orbits
evolved in a time-dependent potential of the form

V (x, y, z, t) = − m(t)
(1 + x2 + y2 + z2)1/2 , m(t) = 1 + δm

sin ωt

(t0 + t)p
, (1)

with δm = 0.5, t0 = 100 and p = 2, which represents a galaxy damping towards
an integrable Plummer sphere. The four curves in the top panel exhibit the x-
component of the phase space emittance, εi = (〈r2

i 〉〈v2
i 〉−〈rivi〉2)1/2 (i = x, y, z),

all computed for the same localised ensemble of initial conditions, but allowing
for four different frequencies ω. The curves exhibit considerable structure but, at
least for early times, the overall evolution is exponential. The bottom panels ex-
hibit the x and y coordinates at five different times for the ensemble represented
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Fig. 1. (top) The emittance εx for an ensemble of initial conditions evolved in an inte-
grable Plummer potential subjected to damped oscillations with four different frequen-
cies: ω = 0.035 (triple-dot-dashed), 1.40 (dashed), 3.50 (dot-dashed), and 7.00 (dotted).
(bottom) x-y scatter plots corresponding to the uppermost curve with ω = 3.50.

by the uppermost of the four curves. Here tD ∼ 20, so that t = 256 corresponds
to roughly 12tD.

Intuitively, one might expect that strong oscillations, which trigger the largest
finite time Lyapunov exponents and the largest number of chaotic orbits, would
yield the fastest chaotic phase mixing and, hence, the most rapid and most
complete violent relaxation. A time-dependence with a weaker oscillatory com-
ponent, e.g., a time-dependence corresponding to a near-homologous collapse,
might instead be expected to yield less chaos and, hence, less efficient and less
complete violent relaxation. There is, therefore, an important need to determine
the extent to which, in real simulations of violent relaxation, many/most of the
orbits (or phase elements) are strongly chaotic, and the degree to which the rate
and completeness of the observed violent relaxation correlate with the size of the
largest finite time Lyapunov exponents and/or the relative measure of chaotic
orbits. Investigations of these issues are currently underway.

3 The Role of Discreteness Effects

3.1 Microchaos and Macrochaos

The discussion in the preceding section, like most applications of nonlinear dy-
namics to galactic astronomy, neglects completely discreteness effects associated
with the ‘true’ many-body potential, assuming that masses in a galaxy can be
approximated as evolving in a smooth, albeit time-dependent, three-dimensional
potential and that ‘chaos’ has its usual meaning. That this is justified is not com-
pletely obvious. The gravitational N -body problem for a large number of bodies
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of comparable mass is strongly chaotic in the sense that individual orbits have
large positive Lyapunov exponent χN even when there is absolutely no chaos
in the continuum limit! If, e.g., a smooth density distribution corresponding to
an integrable potential is sampled to generate an N -body density distribution,
one finds that orbits evolved in this N -body distribution will be strongly chaotic,
even for very large N , despite the fact that characteristics in the smooth potential
generated from the same initial condition are completely integrable. Moreover,
there is no sense in which the exponential sensitivity decreases with increasing
N : if anything χN is an increasing function of N [11]. In this sense, larger N
implies more chaos, not less!

This situation has led some astrophysicists to question, either implicitly or
explicitly, the reliability of the entire smooth potential approximation. Thus,
e.g., it has been suggested [12] that “the approximation of a smooth potential
is useful for studying orbits, but not for studying their divergence.” This is of
course a problematic statement in that the distinction between exponential and
power law divergence, emblematic of the differences between regular and chaotic
behaviour, lies at the heart of applications of nonlinear dynamics to galactic
dynamics. If the Lyapunov exponents associated with the bulk potential have
nothing to do with the N -body problem, one must perforce reject completely all
conventional applications of nonlinear dynamics to galactic astronomy.

The crucial point, then, is that there does appear to be a well-defined contin-
uum limit, even at the level of individual orbits [13–15]. Suppose that a smooth
density distribution, corresponding either to an integrable potential or to a po-
tential admitting large measures of regular orbits, is sampled to generate a fixed,
i.e. frozen in time, N -body density distribution, and that the trajectories of test
particles evolved in this frozen distribution are compared with smooth potential
characteristics with the same initial conditions. In this case, there is a precise
sense in which, as N increases, the frozen-N trajectories converge towards the
smooth potential characteristics. Both visually and in terms of the complex-
ity [16] of their Fourier spectra, the frozen-N trajectories come to more closely
resemble the smooth potential characteristics; and, viewed mesoscopically, the
frozen-N and smooth potential orbits remain closer in phase space for progres-
sively longer times. In particular, a frozen-N orbit corresponding to an integrable
characteristic will have a large Lyapunov exponent χN even if, visually, it is es-
sentially indistinguishable from the regular characteristic!

But how can this be? The key recognition here is that two ‘types’ of chaos
can be present in the N -body problem, characterised by two different sets of
Lyapunov exponents associated with physics on different scales. Close encoun-
ters between particles trigger microchaos, a generic feature of the N -body prob-
lem, which leads to large positive Lyapunov exponents χN . If, however, the
bulk smooth potential is chaotic, one will also observe macrochaos, which is
again characterised by positive, albeit typically much smaller, Lyapunov expo-
nents χS . Suppose, for example, that one compares the evolution of two nearby
chaotic initial conditions in a single frozen-N background or the same chaotic
initial condition evolved in two different frozen-N realisations of the same bulk
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density. In this case, one typically observes a three-stage evolution, namely: (1)
a rapid exponential divergence at a rate χN set by the true Lyapunov expo-
nents associated with the N -body problem, which persists until the separation
becomes large compared with a typical interparticle spacing; followed by (2)
a slower exponential divergence at a rate comparable to the (typically much
smaller) smooth potential Lyapunov exponent χS , which persists until the sep-
aration becomes macroscopic; followed by (3) a power law divergence on a time
scale ∝ (lnN)tD. For regular initial conditions, the second stage is absent and
the time scale for the third stage scales instead as N1/2tD.

Microchaos becomes stronger as N increases in the sense that the value of
χN increases with increasing N [17]. Despite this, however, it becomes progres-
sively less important macroscopically in that the range of the chaos, i.e., the
scale on which the microchaos-driven exponential divergence of nearby orbits
terminates, decreases with increasing N . In the limit N → ∞ microchaos will
become completely irrelevant but, for finite N , it does have an effect, at least on
sufficiently short scales; and it is possible from an N -body simulation to extract
estimates of both χN and the typically much smaller χS [15].

3.2 Modeling Discreteness Effects as Friction and Noise

It has been long recognised that, for sufficiently small N and/or over sufficiently
long times, discreteness effects will not be completely negligible. Systems like
galaxies are ‘nearly collisionless’ in the sense that the stars interact primarily
via collective macroscopic forces associated with the bulk density distribution;
but, at least in principle, if one waits long enough discreteness effects should
have an appreciable effect.

Astronomers are accustomed to modeling discreteness effects in the context of
a Fokker-Planck description analogous to that formulated originally in the con-
text of plasma physics [18]. However, it is not completely clear to what extent
this is really justified. The conventional Fokker-Planck description was formu-
lated originally to extract statistical properties of orbit ensembles and distribu-
tion functions over long time scales, assuming implicitly that the bulk potential
is regular. To what extent, then, can Langevin realisations of a Fokker-Planck
equation yield reliable information about individual orbits over comparatively
short time scales, particularly if the orbits are chaotic?

Analyses of flows in frozen-N systems indicate [14] that, at the level of both
orbit ensembles and individual orbits, discreteness effects can in fact be mod-
eled extremely well by Gaussian white noise in the context of a Fokker-Planck
description, allowing for a dimensionless diffusion constant D ∝ 1/N , consistent
with the predicted scaling D ∝ lnΛ/N , with Λ the so-called Coulomb loga-
rithm [18]. For localised ensembles of initial conditions corresponding to both
regular and chaotic orbits, phase mixing in frozen-N systems and phase mixing
in smooth potentials perturbed by Gaussian white noise yield virtually identi-
cal behaviour, both in terms of the evolution of various phase space moments
such as the emittance and the rate at which individual orbits in the ensemble ex-
hibit nontrivial ‘transitions’, e.g., passing through some entropy barrier from one
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phase space region to another. And similarly, a comparison of frozen-N orbits
and noisy smooth potential orbits with the same initial condition reveals that
their Fourier spectra typically exhibit comparable complexities. Gaussian white
noise is even successful in mimicking some of the effects of microchaos. If, e.g.,
one tracks the divergence of two noisy orbits with the same chaotic initial condi-
tion evolved in a smooth potential, one observes the same three-stage evolution
as for a pair of frozen-N orbits evolved in two different frozen-N potentials.

An example of this agreement is illustrated in Fig. 2, which exhibits data
generated by averaging over 100 pairs of orbits evolved in frozen-N density
distributions which correspond in the continuum limit to a triaxial homogeneous
ellipsoid with axis ratios 1.95 : 1.50 : 1.05, perturbed by a spherically symmetric
central mass spikes (‘black hole’). The top two solid curves represent (from top to
bottom) results for N = 104.5 and N = 105.5. The four dotted curves represent
analogous results derived for pairs of noisy orbits evolved from the same initial
conditions in the smooth potential with (from top to bottom) diffusion constant
D = 10−4, 10−5, 10−6, and 10−7. The near-coincidence of the top two solid
and dotted curves indicates that discreteness effects for N = 10p+1/2 are well-
mimicked by Gaussian white noise with D = 10−p.

Such striking agreement suggests strongly that investigations of how orbits
in smooth potentials are impacted by the introduction of friction and noise
can provide important insights into the role of graininess in real galaxies. It is
customary to assert that, in a system as large as a galaxy, discreteness effects
reflecting close encounters between stars are unimportant because the relaxation

Fig. 2. The mean spatial separation between the same initial conditions evolved in
two different frozen-N backgrounds (solid curves) and different noisy orbits evolved
in the smooth potential from the same initial condition (dots). The solid line has a
slope 0.022, equal to the mean value of the smooth potential Lyapunov exponent χS .
The dashed curve has a slope 0.75, equal to the mean value of the N -body Lyapunov
exponent χN .
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time tR on which they can induce appreciable changes in quantities like the
energy is orders of magnitude longer than the age of the Universe [19]. This is
likely to be true if the galaxy is an exact equilibrium, especially an equilibrium
characterised by an integrable potential. However, the assertion is suspect if (as
must usually be the case) the system is only ‘close to’ an equilibrium or near-
equilibrium, especially if the bulk potential is characterised by a phase space
admitting a complex coexistence of regular and chaotic orbits.

Over the past decade, analyses of flows in time-independent Hamiltonian
systems have revealed that even very weak perturbations, idealised as friction
and white noise corresponding to tR ∼ 106 − 109tD and, hence, D ∼ 10−6 −
10−9, can have significant effects within a time as short as 100tD or less by
facilitating phase space diffusion through cantori or along the Arnold web [20–
22]. The basic point is that the motions of chaotic orbits in a complex potential
can be constrained significantly by topological obstructions like cantori or the
Arnold web which, albeit not completely preventing motions from one phase
space region to another, serve as an entropy barrier to impede such motions.
In many respects, the physical picture is similar to the elementary problem of
effusion of gas through a tiny hole in a wall. There is nothing in principle to
prevent a gas molecule from passing through the hole and, hence, escaping from
the region to which it is originally confined; but, if the hole is very small, the
time scale associated with this effusion can be extremely long.

In the same sense, and for much the same reason, chaotic orbits trapped in
one phase space region may, in the absence of perturbations, remain stuck in that
region for a very long time. However, subjecting the orbits to noise will ‘wiggle’
them in such a fashion as to increase the rate at which they pass through the
entropy barrier, thus accelerating phase space transport. Numerical simulations
indicate that, in at least some cases, this escape process can be well approximated
by a Poisson process, with the number of nonescapers decreasing exponentially
at a rate Λ that is determined by the perturbation [23, 24]. This effect appears
to result from a resonant coupling between the orbits and the noise. White noise
is characterised by a flat power spectrum and, as such, will couple to more
or less anything. If, however, the noise is made coloured, i.e., if instantaneous
kicks are replaced by impulses of finite duration, the high frequency power is
reduced; and, if the autocorrelation time becomes sufficiently long that there is
little power at frequencies comparable to the orbital frequencies, the effect of the
noise decreases significantly. Significantly, it appears that, overall, the details of
the perturbation may be largely irrelevant: additive and multiplicative Gaussian
noises tend to have comparable effects and the presence or absence of friction
does not seem to matter. All that appears to matter are the amplitude and the
autocorrelation time upon which there is a relatively weak, roughly logarithmic,
dependence.

But what does all this imply for a real galaxy? Given that collisionless near-
equilibria must be more common than true equilibria, it would seem quite possi-
ble that, during the early stages of evolution, a galaxy might settle down towards
a near-equilibrium, rather than a true equilibrium, e.g., involving what have been
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termed [25] ‘partially mixed’ building blocks. If discreteness effects and all other
perturbative effects could be ignored, such a quasi-equilibrium might persist
without exhibiting significant changes over the age of the Universe. If, however,
one allows for discreteness effects or, alternatively, other perturbations reflect-
ing, e.g., a high density cluster environment, the orbits could become shuffled in
such a fashion as to trigger significant changes in the phase space density and,
consequently, a systematic secular evolution [26].

Such a scenario could, for example, result in the destabilisation of a bar. Many
models of bars (e.g. [27]) incorporate ‘sticky’ [28] chaotic orbits as part of the
skeleton of structure, replacing crucial regular orbits which can be absent near
corotation and other resonances. Making these ‘sticky’ orbits become unstuck
could cause the bar to dissipate. Similar effects could also cause an originally
nonaxisymmetric cusp to evolve towards a more nearly axisymmetric state. To
the extent that the triaxial Dehnen potentials are representative, one can argue
that chaotic orbits may be extremely common near the centers of early-type
galaxies, but that many of these chaotic orbits are extremely sticky [29] and,
as such, could help support the nonaxisymmetric structure. Perturbations that
make these sticky orbits wildly chaotic could de facto break the bones of the
skeleton supporting the structure and trigger an evolution towards axisymmetry.

4 Experimental Tests of Galactic Dynamics

4.1 Similarities Between Galaxies and Nonneutral Plasmas

Even though electrostatics and Newtonian gravity both involve 1/r2 forces, elec-
tric neutrality implies that the physics of neutral plasmas is very different from
the physics of self-gravitating systems. Viewed over time scales > tR, nonneutral
plasmas and charged-particle beams are also very different from self-gravitating
systems: the attractive character of gravity leads to phenomena like evapora-
tion and core-collapse which cannot arise in a beam or a plasma. If, however,
one restricts attention to comparatively short times 	 tR, much of the physics
should be the same. Theoretical expectations, supported by numerical simula-
tions, suggest that it is the existence of long range order, not the sign of the
interaction, which is really important; but, to the extent that this be true, colli-
sionless nonneutral plasmas and collisionless self-gravitating systems should be
quite similar.

Typical sources of charged-particle beams configure the beams in trains of
‘packets’ or ‘bunches’, as they are termed by accelerator dynamicists. The ob-
jective of a good high-intensity accelerator is to generate bunches comprised
of a large total number of charges confined to a small phase space volume and
then accelerate those bunches to very high energies while minimising any growth
in emittance. As one example, modern photocathode-based sources of electron
beams routinely generate bunches comprised of some 1010 − 1011 electrons with
transverse ‘emittance’ ε̃ of a few microns. (Here ε̃ = ε/v0, where v0 is the mean
axial velocity of the particle distribution.) The energy relaxation time tR asso-
ciated with such bunches typically corresponds to the time required for a bunch
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to travel a distance ∼ 1 km or so which, in many cases, is much longer than any
distance of experimental interest, so that the bunches are ‘nearly collisionless.’

Models of equilibrium configurations of nonneutral plasmas and charged-
particle beams confined by electromagnetic fields can be characterised by a
complex phase space quite similar to that associated with models of ellipti-
cal galaxies and, as such, have orbits with very similar properties. For exam-
ple [9], the so-called ‘thermal equilibrium model’ [32] of beam dynamics, which
involves a self-interacting nonneutral plasma in thermal equilibrium confined by
an anisotropic harmonic oscillator potential, is strikingly similar [29] to the non-
spherical generalisations of the Dehnen potential of galactic astronomy in terms
of such properties as the degree of ‘stickiness’ manifested by chaotic orbits or
how the relative measure of chaotic orbits and the size of the largest Lyapunov
exponent vary with shape.

As in galactic dynamics, questions have been raised regarding the validity of
the continuum approximation for nearly collisionless charged particle beams [31].
However, comparatively short time integrations (t 	 tR) involving discreteness
effects and the nature of the continuum limit in nonneutral plasmas [33] yield re-
sults essentially identical to what is observed for gravity – although the behaviour
associated with neutral plasmas is very different. In particular, the macroscopic
manifestations of phase mixing, for both regular and chaotic orbits, are indistin-
guishable, and the coexistence of microchaos and macrochaos persists unabated.

Nontrivial effects associated with a time-dependent potential have also been
predicted for both nonneutral plasmas [1] and charged particle beams [2]. Al-
though the time-dependence that is envisioned in a beam is typically less violent
than that anticipated in violent relaxation within a galaxy, such is not always
the case. Indeed, there is compelling experimental evidence that, in a beam, such
a time-dependence can have the undesireable effect of ejecting particles from the
core into an outerlying halo [34].

Perhaps most interesting, however, is the fact that numerical simulations that
reproduce successfully ‘anomalous relaxation’ observed in real laboratory exper-
iments involving accelerator beams have shown compelling evidence of chaotic
phase mixing. One classic example involves the propagation of five nonrelativis-
tic high-intensity beamlets in a periodic solenoidal transport channel, where
self-consistent space-charge forces are extremely important [35]. Ideally, these
beamlets should exhibit coherent periodic oscillations (quite literally disappear-
ing and reappearing) which might be expected to decay only on a relaxation time
scale tR that corresponds to a propagation distance ∼ 1 km. However, regard-
less of how well the beam was matched to the transport channel, the beamlets
were seen to reappear only once, at a point ∼ 1 m from the source, disappearing
completely within 2 m or so (cf. Fig. 6.10 in [35]). Their failure to reappear
again would seem to reflect some collisionless process that, in effect, causes the
particles to ‘forget’ their initial conditions.

Detailed simulations using the particle-in-cell code WARP [36], which do an
extremely good job of reproducing what is actually seen, demonstrate seemingly
unambiguously that, because of the time-dependent space-charge potential, a
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Fig. 3. Evolution of five representative ensembles of test particles in the five-beamlet
simulation. The left hand panel shows snapshots of the ensembles at (top-to-bottom
left column) 0 m, 0.98 m, 2.88 m, and (top-to-bottom right column) 5.24 m, 11.52
m, and 31.68 m, with the x- and y-axes labeled in meters. The right panel shows the
evolution of the logarithm of the emittances εx and εy as a function of distance S(z)
along the accelerator.

large fraction of the particles in the beam experience the effects of strong, pos-
sible transient, macrochaos [37, 38]. This is, e.g., evident from Fig. 3, which
illustrates the evolution of representative test particles which interact with the
bulk potential but not with each other. Here the left hand panel shows snapshots
of the beam after it has travelled distances 0 m, 0.98 m, 2.88 m, 5.24 m, 11.52 m,
and 31.68 m, with the representative ensembles superimposed. The right hand
panel exhibits the evolution of the emittances εx and εy for these ensembles. It
is evident that the initially localised ensembles are diverging exponentially so
as to fill much of the accessible phase space, and that this exponential diver-
gence coincides with the beamlets losing their individual identities. Also evident
is the fact that the behaviour observed here is very similar to that exhibited in
Fig. 1 which, recall, was generated for orbits in a perturbed Plummer potential
exhibiting damped oscillations.

4.2 Testing Galaxy Evolution with Charged Particle Beams

The aforementioned similarities between galactic astronomy and charged parti-
cle beams suggest the possibility of using accelerators as a laboratory for astro-
physics in which one can perform experimental tests of galactic dynamics, a pos-
sibility currently being developed by a University of Florida – Fermilab/Northern
Illinois University – University of Maryland collaboration. This collaboration,
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which has the dual aims of (1) obtaining an improved understanding of the ap-
plicability of nonlinear dynamics to nearly collisionless systems interacting via
long range forces and (2) using that understanding to generate more sharply
focused bunches by minimising undesirable increases in emittance, is currently
planning concrete experiments which can, and presumably will, be performed on
the University of Maryland Electron Ring (UMER) currently under construction.
Here a number of obvious issues, all experimentally testable, come to mind:

How ubiquitous is chaotic phase mixing as a source of anomalous relaxation?
Older experiments with lower-intensity beams, where the space-charge forces
were comparatively unimportant, tended not to manifest extreme examples of
anomalous relaxation. Anomalous relaxation appears more common in high in-
tensity beams, especially in settings where a time-dependent density distribution
generates a strongly time-dependent potential; and it is obvious to ask whether
chaos is the principal culprit. The idea here is to identify the types of sce-
naria that tend generically to yield anomalous relaxation and to determine, e.g.,
whether such scenaria tend typically to be associated with a bulk potential that
incorporates a strong, roughly oscillatory component. Do numerical simulations
of orbits ensembles evolved in such systems exhibit evidence of chaotic phase
mixing? And do individual orbits in those ensembles exhibit strong exponential
sensitivity, associated, e.g., with transient chaos?

Do instabilities tend to trigger transient chaos? Instabilities in collisionless
systems can exhibit behaviour qualitatively similar to that associated with tur-
bulence in collision-dominated systems, but it is well known that turbulence is
a strongly chaotic phenomenon. This possibility is especially interesting in that
turbulence is another setting where different ‘types’ of chaos, characterised by
wildly different time scales, can act on different length scales.

What types of geometries, both strongly time-dependent and nearly time-
independent, tend to yield the most efficient chaotic phase mixing and the largest
measures of chaotic orbits? Do time-dependent evolutions involving strongly con-
vulsive oscillations tend generically to exhibit especially fast relaxation? And do
they tend to yield especially large amounts of chaos, as probed by the relative
measure of chaotic orbits and/or the sizes of the largest (finite time) Lyapunov
exponents? To the extent that bulk properties of such ‘accelerator violent re-
laxation’ correlate with the degree of chaos exhibited in the evolving beam, and
that the degree of chaos correlates with the form of the macroscopic time depen-
dence, one will have a physically well-motivated explanation of which sorts of
scenaria would be expected to exhibit complete and efficient violent relaxation
and which would not!

Is it, e.g., true that, for nearly axisymmetric configurations, prolate (or
oblate) bunches tend generically to exhibit especially large amounts of chaos?
And do any such trends that are observed coincide with trends observed in
models of galactic equilibria [29]? Even if a beam bunch remains nearly axisym-
metric during its evolution, the acceleration mechanism can – and in general will
– change its shape as it passes down an accelerator in a fashion that depends
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on the accelerator design. The obvious question, then, is whether the oblate or
prolate phase tends generically to be especially chaotic.

Addressing this and related issues could provide important insights as to why
galaxies have the detailed shapes that they do, a general question for which,
at the present time, no compelling dynamical explanation exists. One knows,
e.g., that elliptical galaxies tend to have isophotes that are slightly boxy or
disky, and that this boxiness or diskiness correlates with such properties as the
rotation rate, the steepness of the central cusp, and the size of any deviations
from axisymmetry [39]. Must all these effects be attributed to the detailed form
of the formation scenario, or is there a clear dynamical explanation? Is it, e.g.,
true that the observed deviations from perfect ellipsoidal symmetry conspire to
reduce the relative number of chaotic orbits or to increase the numbers of certain
regular orbit types required as a skeleton to support the observed structure?

One might also use accelerator experiments to probe the role of discrete sub-
structures and the extent to which they can be modeled as friction and noise in
the context of a Fokker-Planck description [40]. If the injection of a beam in-
volves a large mismatch, a significant charge redistribution will occur, resulting
in violent relaxation, ‘turbulent’ behaviour, and the formation of substructures
(‘lumps’) on a variety of scales. To the extent that such a time-dependent evo-
lution can be described in a continuum approximation, one might then expect
that the bulk potential will correspond to a highly complex time-dependent
phase space and that the substructures could act as a ‘noisy’ source of extrinsic
diffusion, facilitating both transitions between ‘sticky’ and ‘wildly chaotic’ be-
haviour and, in some cases, transitions between regularity and chaos. Given the
evidence (cf. [33]) that, at least over short times, discreteness effects act similarly
for attractive and repulsive 1/r2 forces, such insights could be directly related to
such issues as the destabilisation of bars in spirals and/or the secular evolution
of nonaxisymmetric ellipticals towards more nearly axisymmetric states.

Do systems tend to evolve in such a fashion as to minimise the amount of
chaos? There is an intuitive expectation amongst many galactic astronomers
(cf. [41]) that galaxies tend to evolve towards equilibria which incorporate few if
any chaotic orbits, i.e., that nature somehow favors nearly-regular equilibria. It
would certainly appear true that a model must incorporate significant numbers
of regular orbits to support interesting structures like bars and/or triaxiality,
but this does not a priori preclude the possibility of chaotic orbits also being
present. Generic time-independent three-degree-of-freedom potentials are neither
completely regular nor completely chaotic, admitting instead a complex coexis-
tence of regular and chaotic phase space regions. The obvious question then is:
are galactic equilibria or near-equilibria typically well-represented by potentials
which are generic in this sense; or are they, for reasons unknown, special in that
they tend to be rather nearly regular?
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5 Conclusions

This paper has focused on several fundamental issues that arise in attempts to
apply nonlinear dynamics to real galaxies, many-body systems characterised by
a self-consistently determined bulk potential which, during their most interesting
phases, can be strongly time-dependent. As recently as a decade ago these issues
would have been considered of largely academic, rather than practical, interest.
However, recent observational advances – which facilitate improved high resolu-
tion photometry of individual objects as well as statistical analyses of large sam-
ples with varying redshift – and improved computational resources – which allow
unparalleled explorations of multi-scale structure –, together with the recogni-
tion that the basic physics can be also probed in the context of charged particle
beams, imply that theoretical predictions regarding these ‘academic’ issues can
in fact be tested observationally, numerically, and experimentally.

Thanks to Ioannis Sideris for providing Fig. 1 and to Rami Kishek for provid-
ing Fig. 3. Thanks also to Court Bohn for his comments on a preliminary draft
of the manuscript. Partial financial support was provided by NSF AST-0070809.
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Motions of a Black Hole
near the Center of a Galaxy

Richard H. Miller

University of Chicago, Astronomy Department,
5640 S. Ellis Ave., Chicago 60637-1433, U. S. A.

Abstract. Some years ago we published an account of experiments which indicated
that the nucleus of a galaxy orbits around the mass centroid. This can be viewed as
an orbiting density wave which grows near the center in a galaxy model that starts
without such motions. While these experiments were run without a massive particle, we
suggested that similar physical effects might cause a massive particle near the center to
oscillate with larger amplitudes than indicated by simple Brownian motion arguments.
Results from recent experiments will be reported to clarify some of the issues raised
by a massive particle (a black hole) near the center.

Motions of a massive black hole near the center of a galaxy have excited con-
siderable interest lately, since a typical galaxy may harbor a massive black hole
near its center [1]. More recent work is described in a recent review by Ferrarese
and Merritt [2].

Dynamical effects cause a cusp to build up around a black home. A few of
the obvious questions follow:
• the amount of mass in the cusp,
• the density profile of the cusp,
• black hole motions within the cusp, and
• larger scale motions as the black hole–cusp combination move together.

Our methods are best suited to the larger scale motions of the combined black
hole and cusp, and those aspects are the subject of this paper. The other ques-
tions require a different computational approach. Ferrarese and Merritt discuss
some of these features.

Our approach is experimental. It is based on numerical experiments carried
out in a computer, using n−body programs. Results to be presented in this note
are best understood with some appreciation of the methods used to obtain them.

1 Experimental Details

The n−body approach produces an initial value problem, which involves one
set of computer programs to establish the starting condition (the loader) and
another set to advance the system in time (the integrator). Of course, the state of
the system at any stage along the way can be regarded as a new initial condition.

G. Contopoulos and N. Voglis (Eds.): LNP 626, pp. 169–184, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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1.1 Generalities

We refer to the black hole throughout this paper simply as a “massive particle,”
abbreviated “MP,” to stress the fact that it is being treated as if it were a
simple Newtonian particle. Unusual features of a black hole caused by general–
relativistic effects are confined to spatial regions which are much too small to
resolve in many n−body studies, including this one. Field particles feel the black
hole only as if it were a massive particle acting through Newtonian gravitation.
Forces due to the MP are softened to avoid excessive forces.

Boundary Conditions

Boundary conditions are important aspects of any self–consistent self–gravitating
problem like that considered here. Periodic boundary conditions provide a way
to avoid having to follow the dynamics of an entire galaxy. The idea is to provide
a suitable representation of the region surrounding the MP and its associated
cusp that at once is computationally manageable and provides an appropriate
physical surrounding. The immediate environs of the MP are also treated as
being isotropic.

Equipartition

The notion of “equipartition” is often used in this note. It comes from statistical
mechanics, where it refers to equal mean energies per degree of freedom, and
it is used in that sense. There is no reason to believe that equipartition should
hold under the present circumstances, but the concept provides a convenient
terminology to discuss the phenomenon that MP motions do not quite fit the
expected pattern.

A workaround is to define an “effective” MP mass. Call the “actual” MP
mass Mact and the “effective” mass Meff , where the mean MP energy would
be the same as the mean field particle energy if the MP mass were Meff . The
relation between Meff and Mact is of interest.

But a warning is called for: constant reference to Meff tends to suggest that
there is some “mass” that so moves, while the physical reality is likely to be a
more abstract concept like a “density wave” or a “mode.” Certainly there is no
identifiable “thing” associated with the excess of Meff over Mact.

1.2 Loader

An isothermal configuration is generated by the loader. Some design considera-
tions follow.

Isothermal Equation Around a Massive Particle

The standard recipe for generating an isothermal is to use an isothermal distri-
bution function [19], f = f(E) = N exp(−E/E0), where E is the energy of a par-
ticle moving within the system, E0 is the (one dimensional) velocity dispersion
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of field particles, and N is a normalization factor. Use energies per unit mass, so
E = 1

2v2 +Utot, where Utot is the total potential within which the particle moves.
For present purposes, Utot is made up of three parts, which happily add linearly.
Those parts are (1) Usc, the self–consistent potential generated by the complex-
ion of field particles, (2) U•, the potential around the massive particle, and (3)
Uext an external potential. The external potentials that will be considered are
(isotropic) harmonic, and the potential due to the MP is Keplerian.

Densities are computed in the usual way by integrating over velocities at the
selected point in configuration space.

ρ =
∫

fd3v = ρ0 exp
(

− Utot

E0

)
= ρ0 exp

(
− Usc + U• + Uext

E0

)
, (1)

where constants from the integration and the normalization factor have been
absorbed into a single constant, ρ0.

Remark. An analytic self–consistency problem can be formulated for spherical
symmetry by incorporating this density into the Poisson equation to yield

1
r2

d

dr

(
r2 dUsc

dr

)
= 4πGρ0 exp

(
− U• + Uext

E0

)
exp

(
− Usc

E0

)
. (2)

Save for the first exponential, this is the standard isothermal equation [4]. Poly-
tropic systems follow the same line of argument, with fpoly = Npoly(−E/E0) p.
Because of the extra terms resulting from U•, neither the polytropic nor the
isothermal cases have the usual homology invariances [4].

The singularity in U• as r → 0 requires special treatment in the integration
of (2). Integrating once, (2) becomes

r2 dUsc

dr
= 4πGρ0

∫ r

r0
exp

(
− U• + Usc

E0

)
r2 dr,

if Uext is set to zero. Huntley and Saslaw [5, 6] discuss treatment of the lower
limit, r0, on the integral to work around the singularity in U•. The contribution
of U• is more complicated in stellar dynamical problems than they indicate.

A Practical Loader

Fortunately, computational solutions to the Poisson equation usually work from
the integral form and get around issues of singular potentials by softening the
forces. In the absence of analytic solutions to the self–consistency problem in
periodic boundary conditions, we use iterative solutions built with densities in
the form provided by (1).

The iterative procedure runs as follows. Guess a density distribution, then
find the Newtonian potential generated by that density distribution using the
same Poisson solver as for the integrations. Add any external potential and the
potential due to the massive particle, and then take the exponential of that
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summed potential at every tabulated point to generate a new density distribu-
tion. Taking that new density distribution as a new starting point, repeat the
process until it converges in some sense. Happily, this process converges nicely.

Care is required on a few points: to obtain the desired number of particles, to
determine the final value for the constant that replaces the physical gravitational
constant, to obtain the desired ratio of maximum to minimum densities, to
handle scaling and additive constants in the three kinds of potential consistently,
and so on.

This builds a density from which each field particle can be assigned a position
by a quasi–Monte Carlo process. Once given a location, each particle is assigned
a velocity sampled from an isotropic Maxwellian distribution with E0 set to
ensure self–consistency. The MP was always loaded on the origin.

Loads so generated are usually very near self–consistency, as tested by inte-
grating them forward in time and noting that most properties are constant to
within a percent or so. Polytropic models differ only in detail, but none were
used in the experiments discussed here.

1.3 Integrator

A time–centered leapfrog integrator is used. It is symplectic, and so guarantees
a Liouville theorem, which is an essential ingredient of the physical properties
of a stellar dynamical system. Particles can cross a “periodic boundary” freely.

Forces are derived from a potential, which is worked out anew at each in-
tegration step. The self–consistent part is computed a Poisson solver, and any
external potential is then added. Forces due to the massive particle are handled
in the integrator to avoid having to treat large forces in the Poisson solver. Tab-
ulated densities serve as input to the Poisson solver, and the output is tabulated
at the same set of points. Our set of tabulation points forms a cubic cartesian
lattice with lattice spacing L. The periodicity length is N tabulation points, so
a the edge of a periodic cell is NL.

Field particles have mass, m, and T is our integration time step. Physically
consistent units are related by the dimensionless constant W = GmT 2/L3, which
replaces the physical gravitational constant in the calculations. Numerical values
quoted later in this paper are given in dimensionless form, so distances are in
units of L, masses in units of m, and velocities in units of L/T , and so on. MP
masses are quoted in units of m, so an MP mass of 100K is 100 000m. There is
no simple way to relate these units to observations.

2 Results from Experiments

Experiments reported in this paper came from 3 sets: (1) Periodicity length N =
128, (2) Periodicity length N = 64, and (3) the entire configuration embedded
in a strong isotropic harmonic potential, again with periodicity length N = 128.
All experiments ran with P = 800 768 particles. The MP was initially at the
center of a periodic cell, so the even values of N used here place the MP at equal
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distances from eight neighboring tabulation points, at the common corner of the
small cubic cells centered on those 8 tabulation points. Even very small motions
cause the MP to move through various ones of those small cells.

Experiments with Periodicity Length N = 128 are described first, followed
by the remaining sets, which begin with Sect. 2.4.

2.1 Nature of MP Motions

MP motions look like a growing oscillation which levels off at later times. The
Y −component of the MP position is shown as a function of time for six runs
in Fig. 1, which are stacked for clarity. The numbers at the end of each track
indicate the mass of the MP. Amplitudes for the 100K track are magnified 5
times and they are doubled for the 10K track.

While the tracks at lower mass (< 10K) look like a growing oscillation that
levels off at some amplitude, all with nearly the same period, tracks for the
more massive 10K and 100K experiments look different. Both the amplitudes
and periods are irregular. It is tempting to guess that they may become chaotic,
but we cannot make any definitive claims in that regard.

Fig. 1. Y-Component of MP motions from Experiments with Different MP Masses.
Tracks are spaced vertically for clarity. Labels at the end of each track indicate the
mass of the MP
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Fig. 2. Energies per Unit Mass from Experiments with Different MP Masses

2.2 MP Energies and Effective Masses

Orbital periods are sufficiently constant throughout these runs that a total MP
energy per unit mass can be estimated from 1

2 ((ωx)2 + v2). A convenient way to
estimate 1/ω is to scale the displacements so they match the velocities through-
out the runs, which they do pretty well. When energies so determined are plotted
as functions of time, all on the same page, the Fig. 2 is generated.

Log (energy per unit mass) is plotted in Fig. 2. At smaller MP masses the
curves nearly overlap, but for the greatest MP masses, they “equilibrate” at
lower values. The near overlap is of interest here.

The track for MP mass of 100K climbs rapidly at the end. The MP had
wandered off to a large distance on a nice smooth orbit.

Tracks in Fig. 2 that are associated with runs with smaller MP masses are
reasonably smooth, while those with the largest MP masses become increasingly
irregular, even apart from the high–frequency “grass” along the track for 100K.
Part of that “grass” arises from roundoff.

Weight Energies by “Effective” MP Mass

Tracks can each be scaled so that they all settle down at about the 0.75 level,
the mean energy of a field particle, giving Fig. 3. In the picture provided by
equipartition, the scale factor represents an “effective” mass.

The overlap is by no means exact. The irregularity in a given track may
be regarded as typical of the scatter of MP energy values due to the statistical
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Fig. 3. Energies Weighted by Effective MP Masses

processes inherent in an equipartition picture. The scatter from experiment to
experiment is about the same as the scatter within a given experiment in this
plot. Call the “actual mass” Mact and the “effective” mass Meff .

Compare Effective and Actual Masses

When the two kinds of “mass” are compared in Fig. 4, an interesting pattern
emerges. The heavy diagonal line in that plot indicates equality of the effective
mass and the actual mass, Meff = Mact. Filled black squares indicate experiments
from this N = 128 sequence. The other points come from the other sequences.
The lines connecting these points are there simply to guide the eye.

There is a bit of a cheat in the abscissa of Fig. 4: Mact = 0 has been entered
as about 1.4, to prevent the plotted points from disappearing off to the left.
Otherwise both scales are logarithmic.

For small Mact, Meff is nearly constant at about 600. Once Mact exceeds that
value of 600, the two are nearly equal: Meff ≈ Mact.

To zero order, this set of experiments fits a pattern, Meff ≈ max(600, Mact).
There may be a dip partway along the constant Meff portion, but that hangs
on just one experiment. The constant portion reflects the near–overlap of tracks
noted in Fig. 2. It is not clear what physical features set the effective mass at
about 600 for low Mact.
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Fig. 4. Comparison of Effective MP Masses against Actual MP Masses

2.3 The Run with MP = 100K

The run with the very large Mact = 100 000 showed several features that set it
apart from the other runs in the N = 128 sequence.

Density Cusp Around the MP

Field particles near the MP form a definite density cusp. The cusp is shown as
the solid track in Fig. 5. The dashed track comes from the run in which the
MP mass is zero, for comparison. Both loads had the same number of particles
and the same initial density contrast, ρmax/ρmin = 100, so the profile with 100K
mass has much more mass at great distance.

This cusp is quite robust. It has a near power–law slope, ρ ∼ 17.5r−1.50,
and the cusp remains substantially unchanged to the end of the experiment.
However, it does not have much mass – only about 5000 field particles, some 5%
of the mass of the MP.

The principal reason there is so little mass in the cusp is that so little phase
volume is available. The cusp is confined to a small configuration volume, and
the MP force field, which is softened with a softening length around 1.5 of our
length units, restricts the velocities that can be bound. In analytic solutions (1),
more mass accumulates around the MP with shorter softening in an isothermal
configuration, finally diverging in the limit as the softening goes to zero.

The cusp seen in this run fits the expected density to fill the potential of the
MP according to (1). There is no evidence of a nonlinear increase in cusp mass
due to the mass in the cusp itself. Doubtless that increase must be present for
more massive cusps.
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Fig. 5. Density Profiles at the Start of Experiments with MP mass = 100K (solid line),
and with MP mass = 0 (solid line)

The Cusp Moves With the MP. A second property is that the cusp moves
with the MP. It remains pretty well centered on the MP. This is shown in Fig. 6,
in which the MP position and cusp position are plotted together at the same
times. Figure 6 extends the time scale beyond that of Fig. 2. Data were fil-
tered with a low–pass box filter because the raw data for the cusp position
is noisy. Both the MP position and the cusp center positions were filtered by
the same filter for this plot to avoid problems with filter calibration. Only the
x−component of position is shown in Fig. 6, but agreement in the other two
components is equally good. We regard the agreement as spectacular.

Particles Bound to the Cusp. A third property is that there seem to be NO
particles permanently bound to the cusp. Passing field particles dwell there a
bit longer, probably because their trajectories are curved, and thus account for
what appears to be an enhanced density. This property can be seen from (1) if
a density well is placed in an otherwise uniform isothermal sea of particles.

The Large MP Orbit

Energy plots were cut off T = 2560 to avoid a large drift of the MP toward the
end of the run. This drift turned out to be useful, even though it is harmless,
because it helped to nail down the case that the cusp moves with the MP (Fig. 6).

Features of MP Motion in the 100K Run

MP motions looked nearly oscillatory in runs with smaller MP masses, but they
look quite irregular (albeit smooth) in the 100K run. There is noise in the MP
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Fig. 6. Comparison of Cusp and MP Positions. (solid line) MP position, (dotted line)
Cusp position

energy plots and in the MP velocity plots, but this is related to roundoff because
of the small MP velocities in this run. Velocities are small because of the large
mass.

The similarity of displacement and velocity plots broke down for the 100K
run when the MP took off on its large drift, so the rule for estimating MP energy
was no longer valid once that drift started. It was pretty good up to that time.

2.4 External Harmonic Potential

MP motions appear nearly harmonic, at least in the low-mass portions of Fig. 4,
leading to the question how a batch of self–gravitating particles would act if
placed within a fixed, fairly strong, harmonic potential.

This set of experiments was undertaken to investigate that question. The
quick answer, as indicated by the filled black circle points in Fig. 4, is that
systems in a harmonic background potential act much like systems without the
harmonic potential, save that the effective mass along the low–mass portion is
significantly higher at around 8 000. The double point at Mact = 2000 represents
two experiments. Points at Mact = 40 000 lie near the Meff = Mact line, just as
the heavy points do in other experiments.

Tracks of the MP energy weighted by Meff vs. time for this series of experi-
ments are quite similar to those of Fig. 3, except that they are not as noisy. This
is especially true of tracks with large Mact.
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An unusual aspect of the experiments in a strong external harmonic potential
is that they all show a strong oscillation in the total kinetic energy (sum of
all field particles plus the MP). The fractional amplitude of these oscillations
((peak to peak difference)/mean) was 9 to 12%, which is several times as great
as the worst case encountered with other kinds of external potential. Fractional
total KE oscillations were typically under 1% for other experiments, often mere
fractions of a percent. Oscillations in the harmonic potential continue undamped
for the duration of any experiment. The period of these oscillations was quite
accurately half the period of the external harmonic potential, just the expected
value. The design period of the external potential is set at 77 of our time units
in all these experiments.

Lagrangian radii show the oscillation to have an amplitude proportional to
the mean radius for that mass, a pattern that we have called the “fundamental”
or “breathing” mode a different study [9]. The phase of the oscillation is the
same at all masses.

These oscillations defied all efforts to get rid of them, through many trials
and many checks. This suggests that there is something peculiar to harmonic
potentials that makes it difficult to attain a Vlasov equilibrium. Of course, ev-
erything goes at the same frequency in a harmonic potential, so there are many
resonances.

The period of MP oscillation in each of these experiments is around 74, mea-
surably less than the period of 77 set by the external potential. Difference periods
in the two kinds of oscillation are around 2000 of our time units. Our integra-
tions extend beyond a period of the difference frequency, so MP motions are
demonstably not in resonance with the frequency of the background potential.

The shorter period arises from the fact that the collection of field particles
contributes a potential that itself looks harmonic, and which modifies the total
frequency down near the center of the configuration. It increases the frequency,
which decreases the period. Again, this is reasonable and expected.

2.5 Other Features

Some other results applied across the entire set of experiments reported here.

Trajectory Separation

One feature was noticed in every one of the experiments of the three sets de-
scribed here. As noted earlier, the MP was started from rest at the center of
a “periodic cube.” One field particle among the full load also started from rest
at the same location. One of the routine post–run analyses consisted in tabu-
lating the difference between the location of that one field particle and the MP
throughout each experiment. The remarkable feature is that the field particle and
the MP showed identical motions. Their position never deviated by more than
roundoff in the accuracy with which the field particle position was tabulated:
0.002 of our length units at N = 128 and 0.001 at N = 64.
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In a normal n−body problem, trajectories of these two particles would sep-
arate, and their distance (in phase space) would grow exponentially with time,
like a Lyapunov exponent. We checked that this property holds for experiments
run with grid codes like that used for the present experimental sequences, and
found that exponential separation held in those cases as well. These tests were
run some years ago.

These two trajectories do not separate. They remain very accurately together
for the entire experiment. It is even more remarkable that they do not separate
even in cases where Mact = 0 – when, in effect, there is no MP.

This seems to indicate that motions near the MP are not chaotic, since
otherwise the trajectories should separate. There seems to be a patch near the
center that is locally harmonic, and harmonic potentials are not chaotic. With
large values of Mact the softened potential of the MP is locally harmonic, and it
produces a benign environment within which that particular field particle might
move. In principle, that field particle might orbit around the MP with small
amplitude, but if so, its amplitude is too small to be detected.

MP Started with Nonzero Velocity

The MP started with nonzero velocity in experiments from another sequence. It
settled down to the same amplitude of motion (same MP energy) as was attained
by an MP starting from rest. This is consistent with any picture in which the
steady state is described by equipartition. That other sequence is not described
in this note. There was no external potential in that series of experiments.

3 Discussion

A few conclusions follow from the experimental results presented here.

3.1 The Relation Between Actual and Effective MP Masses

Experiments with low Mact show limited amplitude of MP motion which follows

Meff ≈ max(M0, Mact) (3)

approximately, with differing M0 depending on circumstances. We find M0 ≈ 600
for the N = 128 sequences, 250 for the N = 64 sequences, and 8 000 for the
sequences with a strong harmonic external potential. So far, we have no way to
estimate M0, although trends seem reasonable.

The pattern at low Mact (Mact < M0) requires that the field particles and
the MP be treated as a self–consistent whole. Smooth galaxy centers have a
locally harmonic potential near the center, where a kind of collective effect takes
over. This pattern confirms our earlier result [7, 8] since those experiments all
had Mact = 0. An interesting example was included in [10], where a group of
1000 particles, each with mass equal to that of a field particle, showed coherent
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motion that grew in a manner similar to that seen here. But it looks as if one
early speculation is not valid: we guessed that a massive black hole might show
displacements well in excess of those consistent with equipartition. It doesn’t.

The break in (3) at high mass where Meff > Mact and the different character
of MP motions with large Meff may be caused by a cusp, which could modify
the force law in the neighborhood of the MP. The cusp moves with the MP,
indicating that an effective mass for the combined MP and cusp should include
the mass of the cusp. That enhancement is small in the experiments reported
here, attaining a value at most around 5%, well below our ability to detect it.

An important aspect of these results is that the plateau at M0 holds right
down to Mact = 0 According to equipartition, the MP velocity should diverge in
that case, but nothing of the sort happens.

Remark. The question how a batch of particles interact in a strong harmonic
background potential might be illustrated by the following perturbation–type
problem.

A batch of particles moves in a harmonic potential. They do not interact in
the unperturbed state, but have a weak interaction is turned slowly. How do
they respond?

The interesting case with 1/r Keplerian interaction is impossible to handle,
so we seek an interaction with similar features that can be handled analytically.
That leads to the following problem, which can be solved completely. Complete
analytic solutions like this often suggest features which a more complex system
must share.

Imagine a set of n particles in a harmonic potential, but with a harmonic in-
teraction between absolutely every pair of particles. Start with a one–dimensional
problem. The formulation looks a lot like the normal modes problems discussed
in mechanics texts.

Let the coordinate of the ith particle be xi. All particles have the same mass
and the interaction between the ith and jth particles is 1

2b(xj −xi)2. Characterize
the background harmonic potential by its frequency, Ω. Divide out the mass of
each particle so the equation is per unit mass. The equation of motion for the
ith particle (of a set of N particles) is

ẍi = −Ω2 xi + b

n∑
j �=i

(xj − xi).

The sign on the interaction term puts the acceleration in the positive direction
if xj > xi, which is what we want. The j = i−term has been omitted, but it
can be included with no harm since it is always zero. Include it, and assume
harmonic motion for all particles (with the explicit exponential, eiωt cancelled
throughout).

Then the equation of motion (always per unit mass) can be written

(ω2 − Ω2 − nb) Xi + b

n∑
j=1

Xj = 0, (4)
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where Xi and Xj are the (complex) coefficients that multiply those eiωt terms.
ω2 is an eigenvalue of the system.

In matrix notation,

MX = 0 with M = aI + bJ, (5)

where a = ω2 −Ω2 −nb and b is dimensionally a frequency squared. The matrix
I is an n × n identity matrix and the matrix J is the n × n matrix all of whose
entries are 1’s.

The matrix J is the dyad, f fT , of a 1×n column vector all of whose entries
are 1’s, so its rank is one. Superscript T denotes the transpose of a matrix. f is
an eigenvector of J with eigenvalue n. The eigenvalues of J are all zero save for
one whose value is n. It is straightforward to construct a complete basis for J ,
but it is not needed for present purposes.

Since M = aI + bJ is real symmetric by construction, it can be reduced
to diagonal form with real diagonal elements. There are n − 1 matrix diagonal
elements of a and one whose value is a + bn. These statements are more or less
evident, but the argument can be facilitated by the following considerations. Let
R be the (n × n orthogonal) matrix that diagonalizes J . Then

RT M R = a (RT I R) + b (RT J R).

But RT J R is diagonal, and RT I R remains diagonal (since the identity remains
an identity under any rotation), so this transformation also diagonalizes M . The
diagonal elements add, term–by–term, so M has n − 1 diagonal elements of a
and one of a + bn.

This solves our problem, since (5) requires each diagonal element to be zero.
When the defining values are plugged in, we have one eigenvalue with ω2 = Ω2

and n − 1 eigenvalues of ω2 = Ω2 + n b.
The single eigenvalue, ω = ±Ω goes with the eigenvector f . All particles

are in the same place and move together, oscillating with the frequency of the
background harmonic potential. This solution, with a single large blob, should
have been expected.

The set of n − 1 degenerate eigenvalues goes at a higher frequency. At a
given interaction strength their frequency grows without bound as n becomes
very large. Particles move in any of a variety of manners, save that they do not
move as one large blob. “Modes” in the degenerate set feel the full acceleration
due to all the particles, irrespective of where those particles might be.

The linear analysis singles out the property that all the particles, piled up
at a single location and moving together, oscillate with the frequency of the
background potential and don’t feel the interactions. Any other motions feel the
combined interaction of all other particles. This property may well be charac-
teristic of this problem, but it might break down when the interactions become
singular at zero separation.

An unpublished 1962 note by Joel L. Brenner [11], of Stanford Research
Institute, pointed out how simple it is to manipulate matrices of the class en-
countered, aI + bJ . He also pointed out that the argument generalizes to block
matrices. Sadly, his note is no longer available.
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Because the harmonic oscillator problem is separable, the three dimensional
extension is easy to construct. It gives rise to a block diagonal matrix, with three
blocks each n × n. The same arguments apply to each block. They would even
apply for an anisotropic external oscillator potential if the problem is discussed
in a coordinate system in which the potential is diagonal. Anisotropic b’s would
have to be diagonal in the same frame, which is a bit artificial.

Unfortunately, the approach described here does not generalize easily to par-
ticles with different masses.

3.2 Theoretical Approaches

The problem of a massive particle in a sea of other particles, all embedded within
a strong harmonic potential, looks a lot like the problem of Brownian motion in
a harmonic potential. This problem has been discussed in the literature, appar-
ently first by Ornstein. It is best known to astronomers through a 1943 paper
by Chandrasekhar [12] but it was also included in [13]. That solution is one–
dimensional, but a linearized three–dimensional extension appears in [14]. All
three [12–14] are reprinted in [15]. The argument was recently retraced by Chat-
terjee [16]. All these approaches show a distribution of velocities and positions
for the Brownian particle as a function of time. In a steady state, after transients
have died out, expectation values are consistent with equipartition.

A Langevin equation is written in these treatments, with force on the Brown-
ian particle treated as a series of impulses governed by a probability distribution.
Those impulses are caused by close encounters, and field particles exert no forces
on each other or on the Brownian particle other than the impulses. This picture
is not completely applicable to the stellar dynamical problem because the un-
derlying harmonic potential is generated by the field particles themselves, and
the field particles interact, making the formulation of the theoretical problem
somewhat inconsistent in the manner for self–gravitating particles.

Chatterjee et al. [16] included an n−body calculation and reported agreement
with the Brownian motion picture. Because their field particles could not feel
each other, they did not move self–consistently, so these authors did not find the
plateau at low MP mass.

Calculations for this program were carried out at the NASA-Ames Research
Center’s NAS Systems Division under a grant of computing resources, which
is gratefully acknowledged. We thank Dr. Bruce F. Smith of NASA-Ames Re-
search Center for arranging the access. It is a pleasure to acknowledge helpful
discussions with Prof. Kevin Prendergast.
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Weak Homology of Bright Elliptical Galaxies
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Abstract. Studies of the Fundamental Plane of early-type galaxies, from small to
intermediate redshifts, are often carried out under the guiding principle that the Fun-
damental Plane reflects the existence of an underlying mass-luminosity relation for
such galaxies, in a scenario where elliptical galaxies are homologous systems in dy-
namical equilibrium. Here I will re-examine the issue of whether empirical evidence
supports the view that significant systematic deviations from strict homology occur
in the structure and dynamics of bright elliptical galaxies. In addition, I will discuss
possible mechanisms of dynamical evolution for these systems, in the light of some clas-
sical thermodynamical arguments and of recent N-body simulations for stellar systems
under the influence of weak collisionality.

1 Introduction

This article focuses on three main questions: (1) Are elliptical galaxies struc-
turally similar to each other? (2) Which detailed dynamical mechanisms can
make elliptical galaxies evolve? (3) Are there general trends to be anticipated
for the evolution of these stellar systems?

Here I will report on a long-term research project aimed at providing answers
to the above questions. Some interesting clues have been discovered only very
recently [5], [6], [12]. Most of the paper refers to the class of bright ellipticals only;
low-luminosity ellipticals are known to be characterized by different dynamical
properties.

2 Structure of Bright Elliptical Galaxies

The answer to whether elliptical galaxies can be considered to be structurally
similar to each other depends on the specific context in which the question is
posed and addressed. Below, I will focus on the context of the physical interpre-
tation of the Fundamental Plane ([26], [23]).

As demonstrated by a number of investigations (e.g., see [29], [30] for a
study based on a sample of more than 200 early-type galaxies), the observed
correlation that defines the Fundamental Plane, log Re = α log σ0 + βSBe + γ
(with α = 1.25 ± 0.1, β = 0.32 ± 0.03, γ = −8.895 in the B band; the effective
radius being measured in kpc, the central velocity dispersion in km/sec, the
mean surface brightness in mag/arcsec2 [2], [29]), is remarkably tight, with a
scatter on the order of 15% in Re.

G. Contopoulos and N. Voglis (Eds.): LNP 626, pp. 185–197, 2003.
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The following simple physical argument has been put forward as an inter-
pretation of this important physical scaling law. If we note that (1) the ob-
served luminosity law of bright elliptical galaxies appears to be universal (the
so-called R1/4 law; [22]) and (2) the kinematical structure of these systems is
regular and uniform ([4], [28]), it is natural to conclude that elliptical galax-
ies should be considered as homologous dynamical systems, in the sense that
the relevant virial coefficient KV should be taken to be approximately constant
from galaxy to galaxy. Then, (3) given the existence of the virial constraint,
the Fundamental Plane can be seen as the manifestation of a mass–luminosity
relation for galaxies (see [27], [46]). In fact, the virial theorem can be written as
GM�/Re = L(G/Re)(M�/L) = KV σ2

0 , where M� is the mass of the luminous
component and L is the total luminosity. By eliminating σ0 from the Fundamen-
tal Plane relation, one finds:(

M�

L

)
1

KV
∝ R(2−10β+α)/α

e L(5β−α)/α ∼ L(5β−α)/α. (1)

The latter relation follows from the empirical fact that 2 − 10β + α ≈ 0.
Unfortunately, there are empirical and theoretical findings that work against

the hypotheses at the basis of the previous argument. First of all, significant
deviations from the R1/4 law have long been noted (see [17], [40]), and found
to correlate systematically with the galaxy luminosity (see also [25]). Second,
studies that have measured the amount and distribution of dark matter in el-
lipticals (see [4]) have shown that the presence of dark matter is more promi-
nent in brighter and spatially larger galaxies, thus demonstrating that the virial
coefficient may vary significantly from galaxy to galaxy. A curious theoretical
point adds further caution to the perception that ellipticals should be consid-
ered homologous systems. This derives from direct inspection of the so-called
f∞ sequence of models [9]. As demonstrated in [5], models that appear to be all
(see Fig. 1, for Ψ in the range 7 − 10) very well fitted by the R1/4 law, over a
luminosity range of more than ten magnitudes, may be characterized by signifi-
cantly different values of the relevant virial coefficient (see Fig. 2, the triangles
representing the virial coefficient for the f∞ sequence of models), as a result of
the impact of a more and more concentrated nucleus.

In [5] we have further confirmed, by close inspection of four cases (NGC
1379, NGC 4458, NGC 4374, NGC 4552; studied in great detail by comparing
the performance of a number of fitting procedures on data taken from [19], [18]),
that the Sersic [41] index n for the R1/n photometric profiles can indeed be very
different from 4 (in particular, for NGC 4552 we find n ≈ 11, with residuals on
the order of 0.2 magnitudes; a fit performed with the R1/4 law would lead to
residuals up to one magnitude, while a fit based on an R1/4+ exponential profile
would have residuals up to half a magnitude). On the other hand, we have
checked that, if the luminosity range where the fit to the photometric profile is
performed is reduced to less than 5 magnitudes, then (see [16]) the profiles are
indeed well fitted by a “universal” R1/4 law.

In conclusion, while we find it necessary to dismiss strict homology as a
viable description of elliptical galaxies in relation to the interpretation of the
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Fig. 1. The best-fit n(Ψ), obtained by fitting the f∞ models, projected along the line of
sight, with R1/n profiles. Note the plateau at n = 4 reached by concentrated (high-Ψ)
models, for which the radial range adopted in the fit is 0.1 ≤ R/Re ≤ 10 (from [5])

Fig. 2. The virial coefficient for the f∞ (triangles) and for the isotropic R1/n (squares)
models, based on an aperture of radius Re/8 (from [5])

Fundamental Plane, the existence of the empirical scaling law suggests that
some kind of weak homology must be enforced (expressed by (1)), as a correlation
between structural properties and total luminosity. In [5] we have also proved
that a large scatter in the dynamical correlations (e.g., in the n ∼ −19 + 3 log L
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relation noted in [17], [25]) may well be compatible with the observed tightness
of the Fundamental Plane.

3 Mechanisms of Dynamical Evolution

Given the conclusion that elliptical galaxies have to be considered only weakly
homologous systems, it is natural to ask whether and how individual galaxies
may change their internal structure via dynamical processes. This general issue is
especially important, if we recall that typically, in the study of the cosmological
evolution of the Fundamental Plane (see [44] and references therein), strict ho-
mology and thus a mass–luminosity relation is assumed for the observed galaxies
and an interpretation of the data (see Fig. 3) is made in terms of pure passive
evolution (through the evolution of the luminosity resulting from the evolution
of the properties of stellar populations).
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Fig. 3. The Fundamental Plane in the rest frame B band. In panels (a) to (e), field
E/S0 galaxies are shown, binned in redshift, and compared to the Fundamental Plane
found in the Coma Cluster by [2]. Panel (f) shows the average offset of the intercept
of field galaxies from the local Fundamental Plane relation as a function of redshift
(large filled pentagons) compared to the offset observed in clusters (open squares). The
solid lines represent the evolution predicted for passively evolving stellar populations
formed in a single burst at z = 1, 2, 5 (from top to bottom). This figure is taken from
[44] where full references are given to the sources for cluster data points and stellar
synthesis models
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Besides the possibility of major merger events, are there significant sources
of dynamical evolution for elliptical galaxies to be considered? As noted recently
[3], the traditional approach to the study of elliptical galaxies, in terms of equi-
librium and stability for the solutions of the collisionless Boltzmann equation,
supplemented by the Poisson equation, may be misinterpreted. Given the very
large values of typical star-star relaxation times in elliptical galaxies (see [20],
[42]) it is generally taken for granted that, unless a system happens to be in a dy-
namically unstable state (for example, a condition of excessive radial anisotropy;
see [39]), its state is basically “frozen” into an equilibrium distribution function.
Thus the only task left to the dynamicist would be to decipher which distribution
function best describes the observed states (a task that is particularly difficult
for non-spherical systems) taken to be strictly stationary.

In our opinion, the above picture is oversimplified and may lead to an im-
proper perception of the dynamics of real stellar systems. If, for simplicity, we
take the view that elliptical galaxies have formed via collisionless collapse (see
[45]), we should realize that splitting past and present conditions (that is forma-
tion processes and a collisionless equilibrium state) is just an idealization that
the theory makes in order to define a basic state and to study its properties. In
reality, stellar systems evolve continually and we should check to what extent
the evolution processes change the internal structure of galaxies.

There are several specific mechanisms and causes for dynamical evolution
that could be studied: (i) “Granularity” in phase space left over from the ini-
tial collapse; (ii) Presence of gas in various phases, especially of the hot X-ray
emitting interstellar medium; (iii) Interactions with a compact central object;
(iv) Interactions between the galaxy and its own globular cluster system; (v)
Interactions with external satellites and effects of tides and minor mergers.

In a recent paper [6] we have tried to quantify the role of items (iv) and (v)
above by means of N-body simulations. The idea at the basis of these studies is
that heavy objects can suffer dynamical friction and then be dragged in toward
the galaxy center, as studied earlier, for example, in [15], [14], [48]; in fact, the
parallel momentum transport relaxation time Tfr is related to the deflection
relaxation time TD by a factor that can be very small when a heavy test particle
moves through a field of lighter particles: Tfr = 2TDmf/(mt + mf ). We have
thus revisited the problem of simulating the orbital decay of a satellite, placed
initially on a circular orbit at the periphery of a galaxy, and basically confirmed
the general findings presented in [14]; note that our simulations have been made
with about one million particles, while the earlier simulations had been car-
ried out with a few thousand particles. Then we have proceeded to address a
quasi-spherical problem in which the satellite is fragmented into many smaller
objects (several runs were made with either 20 or 100 fragments), distributed
on a spherical shell. The quasi-spherical symmetry that characterizes this study
has the important advantage of allowing for a smoother framework, basically
free from other effects unrelated to dynamical friction, such as those associated
with lack of equilibrium in the initial configuration. Furthermore, with respect
to the earlier studies of the orbital decay of a single satellite, our attention here
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Fig. 4. The development of pressure anisotropy in a galaxy as a result of the interaction
with a shell of N = 100 fragments dragged in toward the galaxy center by dynamical
friction. The broken line represents the evolving value of KT /2, where KT is the total
kinetic energy associated with the star motions in the tangential directions; the solid
line represents the evolving value of Kr, the total kinetic energy associated with the
star motions in the radial direction (from [6])

is mostly shifted to measuring the evolution of the underlying structure of the
hosting galaxies. One effect observed, while the fragments are slowly dragged in
toward the center, is a general change in the stellar density distribution with re-
spect to the initial polytropic basic state. Another expected effect that we have
been able to quantify, starting from an initially isotropic distribution of stel-
lar orbits, is the slow growth of a tangentially biased pressure anisotropy (see
Fig. 4). All these slow dynamical evolution effects appear to be genuinely associ-
ated with the process of dynamical friction exerted by the stars on the minority
component of heavier objects. We are planning a survey of cases that should al-
low us to identify general properties of dynamical evolution in elliptical galaxies
resulting from the interaction between the stars and a significant population of
globular clusters or of the merging of a large number of small satellites.

4 General Trends from Thermodynamical Arguments

In order to study possible general trends that may be anticipated for the evo-
lution of elliptical galaxies, we refer to the general framework that has been
successfully applied to the context of the evolution of globular clusters. Globular
clusters appear to be well represented by King [34] models (see [24]). They are
recognized to be non-homologous stellar systems, subject to dynamical evolu-
tion resulting from internal effects (such as weak collisionality and evaporation)
and external perturbations (such as disk-shocking, when, in our Galaxy, their
orbits happen to cross the disk). It has been noted that these mechanisms of dy-
namical evolution make a globular cluster evolve approximately along the King
equilibrium sequence (see [47] and references therein).
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For globular clusters, an important paradigm is provided by the gravothermal
catastrophe [37], which offers interesting applications and physical interpretation
(for a review, see [42]). Here we recall that, starting from the study of isother-
mal gas spheres [13], the gravothermal catastrophe is expected to occur also in
stellar systems (see [1], [37]). The instability is interpreted as due to the cu-
rious property of self-gravitating systems of being characterized by a negative
effective specific heat. Although for stellar systems a rigorous proof has been
provided only for idealized models where an isothermal set of stars is confined
by a spherical box, the paradigm is generally believed to be sufficiently robust to
be applicable to real stellar systems, provided that they possess a sufficient level
of internal collisionality. An independent element that strengthens the view that
the paradigm is indeed robust has been added by an analysis that has shown, for
an isothermal gas, that spherical symmetry is not a necessary ingredient [35].

Following some arguments initially put forward by Lynden-Bell (see [36],
[37]), would there be a way to lay out a similar scenario for elliptical galaxies
as partially relaxed stellar systems? If so, we would gather powerful “thermo-
dynamical” arguments to determine general trends for evolution, beyond the
specific paths produced by a given dynamical mechanism.

In our view, there are two aspects of the problem that require clarification.
A first point is that we would like to start from a physically justified equilibrium
sequence, much like King models for globular clusters, able to describe the gen-
eral properties of elliptical galaxies. A second point is that, formally, the origin
of the gravothermal catastrophe can be traced to the Poincaré stability of lin-
ear series of equilibria (see [31], [32]). For a proper mathematical derivation, one
would thus like to start from a sequence of collisionless models derived rigorously
from the Boltzmann entropy. In the absence of such a sequence, a derivation of
the gravothermal catastrophe has been based on either an unjustified ansatz (see
[33], [38]), that the global temperature of the system would be associated with
the coefficient multiplying the energy in the distribution function, or the use of
non-standard entropies [21] (but for unrealistic models).

In order to address the first point, we may refer to a sequence of models that
have been found to be very promising for a realistic description of elliptical galax-
ies (the so-called f∞ models; [9], see the review [11]). These models have been
inspired by the characteristics of the products of collisionless collapse, as derived
from N-body simulations [45]. In the simple spherical case, they are based on the
distribution function f∞ = A(−E)3/2 exp (−aE − cJ2/2), with A, a, c positive
constants, and define a one-parameter equilibrium sequence, which, much like
King models, can be parameterized in terms of the dimensionless central poten-
tial Ψ = −aΦ(0). For positive values of E the distribution function is taken to
vanish. When Ψ increases beyond a certain value, around Ψ = 7, the models
have a projected mass density profile that is well fitted by the R1/4 law and
indeed they turn out to be an excellent tool to fit the observations. From the
point of view of statistical mechanics, they have been found [43] to be com-
patible with a derivation based on a partition of phase space in terms of the
star energy and the star angular momentum square, under the assumption that
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detailed conservation of the star angular momentum is required at large values
of angular momentum. This closely follows our understanding of the process of
partial violent relaxation [36]. Unfortunately, the derivation is based on heuristic
arguments and the distribution function does not follow from a straightforward
exact mathematical extremization of the Boltzmann entropy; in particular, the
orbit time that acts as a weight to the cells in phase space is replaced, for sim-
plicity, by a factor 1/(−E)3/2, which is approximately correct only for weakly
bound orbits. Therefore, attempts at using this equilibrium sequence to study
the gravothermal catastrophe in the context of elliptical galaxies, while defi-
nitely appealing from the physical point of view (see also [8]), would remain less
satisfactory from the formal point of view.

Now we have shown [12] that we can carry out a program that is satisfactory
not only from the physical point of view (because it is based on an equilib-
rium sequence, also inspired by studies of collisionless collapse [45], that is able
to match the properties of observed galaxies), but also from the mathematical
point of view (because the distribution is derived rigorously from the Boltzmann
entropy by requiring the conservation of a third global quantity Q, in addition
to total energy and total mass). The program is made possible by the second
option explored in [43] for the construction of models of partially relaxed stellar
systems. This option leads to the so-called f (ν) models. It was already noted
[43] that the general physical properties of the f (ν) models are close to those of
the f∞ models and, in particular, that for ν in the range 0.5 − 1 their projected
mass distribution, for concentrated models, follows the R1/4 law.

Let f be the single-star distribution function, E the single-star specific energy,
and J the magnitude of the single-star specific angular momentum. Consider the
standard Boltzmann entropy:

S = −
∫

f ln fd3vd3x (2)

and extremize it under the constraint that the total mass

M =
∫

fd3vd3x, (3)

the total energy

Etot =
1
3

∫
Efd3vd3x, (4)

and a third global quantity

Q =
∫

Jν |E|−3ν/4fd3vd3x (5)

are assigned. Then the resulting distribution function is

f (ν) = A exp (−aE − dJν |E|−3ν/4). (6)

In the above expression, the quantities A, a, and d are positive constants. The
parameter ν is a free (positive) parameter, which was argued [43] to be in the
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range 0.5 − 1.0. In the following we refer to the case ν = 1. Note that the
three constants appearing in the distribution function define two scales and one
dimensionless parameter, which we take to be γ = ad2/ν/(4πGA).

Self-consistent models generated by such distribution function are computed
from the Poisson equation, solved under the boundary conditions of regular po-
tential at the center and of Keplerian potential at very large radii. For positive
values of E the distribution function is taken to vanish. If we introduce the
dimensionless central potential Ψ = −aΦ(0), the outer boundary condition de-
fines a sort of eigenvalue problem that is solved by the relation γ = γ(Ψ). The
self-consistent models thus make a one-parameter equilibrium sequence.

By careful numerical integration, one may then proceed to calculate the func-
tions S = S(M, Q, Ψ) and Etot = Etot(M, Q, Ψ) on the equilibrium sequence (see
Fig. 5) and from here the inverse global temperature

ζ =
(

∂S

∂Etot

)
M,Q

. (7)

The onset of the gravothermal catastrophe is thus determined by inspection of
the equilibrium sequence studied in the (Etot, ζ) plane (following [31]).

In [12] we have implemented the above program and shown that for the f (ν)

models the gravothermal catastrophe is expected to set in at Ψ ≈ 9. Surprisingly,
around this value of the concentration, the projected mass distribution turns out

0 5 10 15
0

0.1

0.2

0.3

0.4

Fig. 5. Specific entropy and total energy along the equilibrium sequence of f (ν) models
with ν = 1 (as a function of the concentration parameter Ψ , at constant M and Q, and
thus expressed by means of the dimensionless functions σ(Ψ) and ε(Ψ)). Note that for
Ψ < 3.5 the models are characterized by a negative global temperature, because the
derivatives of S and Etot have opposite signs. This figure is taken from [12]
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to be very well fitted by the R1/4 law (this general point had already been noted
in [43], but outside the context of the gravothermal catastrophe). For values of
Ψ close to and beyond 9, the general properties of the instability “spiral” in the
(Etot, ζ) plane, based on the proper thermodynamical definition of the global
temperature, are the same as in the (Etot, â) plane, based on the ansatz that the
temperature of the models is determined by the coefficient a (see Fig. 6).

One important point noted in [12] is a qualitative departure of the behavior of
the instability “spiral” at low values of Ψ . For the original gas sphere and for the
stellar dynamical analogue of a stellar system confined by a box with reflecting
walls, the limit of low concentration was identified as that of a non-gravitating
ideal gas, subject to Boyle’s law. In our case, the analogy breaks down. In fact,
the global temperature turns out to change sign at Ψ ≈ 3.5 (see Fig. 5). Such
a drastic event should be accompanied by some physical counterpart in the dy-
namical behavior of the system. Surprisingly, the value of Ψ ≈ 3.5 coincides with
that for the threshold of the radial-orbit instability [39] (for the context of f∞
models, see [7] and [10]). In other words, by undertaking a thermodynamical de-
scription of the equilibrium sequence of models defined by the f (ν) distribution
function, we have found arguments that lead us naturally not only to the inter-
pretation of the observed R1/4 law, but also to one clue for the interpretation
of the radial-orbit instability of collisionless stellar systems. Besides the proper-

-0.03 -0.025 -0.02 -0.015 -0.01

10

20

30

Fig. 6. The instability “spiral” of f (ν) models with ν = 1. The solid line refers to the
results obtained from the ansatz that the coefficient a represents the inverse global
temperature. Crosses represent the inverse global temperature from the definition
∂S/∂Etot; other symbols indicate estimated points for which the adopted numerical
differentiation is less reliable. Point A marks the onset of the gravothermal catastrophe
(from [12])
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Fig. 7. Pressure anisotropy profiles α = 2 − (〈v2
φ〉 + 〈v2

θ〉)/〈v2
r〉 as a function of radius

for selected f (ν) models (ν = 1) compared to the pressure anisotropy profile found [45]
in numerical simulations of collisionless collapse. This figure has been prepared by M.
Trenti

ties just outlined, one important additional aspect that makes the f (ν) models,
at this point, more appealing than the f∞ models is their anisotropy level. We
had noted (e.g., see [11]) that the f∞ models are actually too isotropic, when
compared with the final products of simulations of collisionless collapse [45].
The present models turn out to be much more interesting even in this respect.
We have indeed checked that their characteristic anisotropy profile, for values
of Ψ close to the onset of the gravothermal catastrophe, is very similar to that
observed in the numerical simulations (see Fig. 7).

5 Conclusions

For a physically justified family of equilibrium models, representing the result
of incomplete violent relaxation, and derived rigorously from the Boltzmann
entropy, we have shown that, at high concentration values, the onset of the
gravothermal catastrophe is found to occur at Ψ ≈ 9, in the parameter domain
where models are characterized by an R1/4 projected density distribution. At
low concentration values, the equilibrium sequence presents a drastic departure
from the limit of the classical isothermal sphere, because models become as-
sociated with a negative global temperature. The transition point, Ψ ≈ 3.5,
turns out to coincide with the point of the sequence where the radial-orbit in-
stability sets in. In the intermediate concentration regime, 3.5 < Ψ < 9, the
structural properties of the models change, much like those of models along the
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King equilibrium sequence, a family of models that is known to capture the non-
homologous properties of globular clusters. It is our hope that, in this domain
of intermediate concentration values, the f (ν) models may be used to describe
the characteristics of weak homology of elliptical galaxies.
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Observing Chaos in Disk Galaxies�

Preben Grosbøl

European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching,
Germany

Abstract. Regions in disk galaxies where one would expect to find chaotic behavior
are likely to be associated with major stellar resonances such as the co-rotation. The
possible identification of such locations in real galaxies is illustrated by examples of
four spiral galaxies observed in the K band. Observational issues related to the detec-
tion of chaotic regions are discussed. Although surface photometry may suggest chaotic
regions, it is essential to compare detailed velocity profiles with dynamic models to es-
timate the probability of such claims. Finally, the feasibility of performing observations
of chaos with current state-of-the-art facilities such as the VLT is considered. It is found
that it should be possible down to a surface brightness level of I ≈ 20 mag/arcsec2 cor-
responding to the end of bars in typical disk galaxies whereas access to detailed studies
of chaos in the main spiral pattern would require more powerful facilities.

1 Introduction

Chaotic behavior of orbits in galactic potentials is frequently seen in analyti-
cal models and numerical experiments (e.g. N-body simulations). By increasing
perturbations in models of spiral galaxies, one can observe a transition of stable
orbits to chaotic ones [4]. Numeric techniques make it simple to identify such
orbits by calculating their dynamic spectra [29]. The existence of chaotic behav-
ior in models does not automatically mean that it is an important phenomena
in real galaxies. It is also possible that growing spiral modes are damped by
non-linear effects, causing an increased velocity dispersion, before a significant
fraction of the stars becomes chaotic. Thus, it is of high interest to estimate the
level of chaotic behavior in disk galaxies.

The current paper considers the possibility of observing chaos in real galaxies.
The next section looks on the importance of the environment while the main
regions where one may expect chaotic behavior are identified in Sect. 4. Different
indicators for chaos in disk galaxies, including our own, are discussed in the
following sections. The feasibility of actually observing chaos is then considered
in the last section using VLT instrumentation as a reference.

2 Environment

Current disk galaxies would have had time enough to reach a relative stable and
relaxed state if they were formed in a single collapse at an early epoch of the
� Based on observations collected at the European Southern Observatory, La Silla,

Chile.

G. Contopoulos and N. Voglis (Eds.): LNP 626, pp. 201–212, 2003.
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universe. In a Cold Dark Matter scenario where galaxies are formed in hierar-
chical mergers over a longer time, it is less obvious that present time galaxies
are relaxed, isolated systems as frequently assumed in models. Thus, it is of in-
terest to verify whether typical nearby spiral galaxies have been able to achieve
a quasi-stationary state or not.

The history of star formation in field galaxies provides some information on
the environment at earlier epochs since a higher frequence of encounters between
galaxies may yield an increased star formation rate. Madau et al. [21] used data
from the Hubble Deep Field (HDF) to estimate the past star formation rate and
found that it increased back to around a redshift of z≈1.5. At higher redshifts, the
star formation rate is either close to constant or still monotonically increasing [19]
depending on the exact corrections applied for dust attenuation and cosmological
surface brightness dimming which are significant at these redshifts. Although this
does not exclude a monolithic collapse scenario, it would predict a higher metal
mass density at high redshifts than observed for absorber in quasi-stellar objects.

Another approach is to study the morphology of galaxies as function of their
redshift as done by van den Berg [10] who analyzed the HDFs. He found that
galaxies with z<1 appear largely as disk-like while those with z>2 either had
chaotic knots or were centrally concentrated which may be precursors to elliptical
galaxies or bulges in spirals. For the higher redshifts, a larger fraction of galaxies
showed evidence of recent mergers. Considering the star formation rate at earlier
epochs discussed above, van den Bergh [10] suggested that a change of slope
around z≈1.5 may be cause in a transition from a merger driven star formation
at early epochs to one mainly occurring in galactic disks.

The Hubble morphological classification scheme was found satisfactory for
redshifts z<0.5 while it at higher redshift became increasingly difficult to apply
as the fraction of peculiar galaxies got larger [10]. The frequency of barred spiral
galaxies also became smaller at redshifts z>0.5 which could be caused by their
disks being hotter and therefore more stable against bar instabilities. Spiral
structure observed at these higher redshifts also appear more chaotic and less
well developed.

The influence of the environment on the internal structure of disk galaxies
was investigated by van den Bergh [8, 9] who looked on a set of 930 Northern
galaxies in the Revised Shapley-Ames catalog [24]. From this sample, he found
no statistical significant change in the morphology of bars or spiral structures
as function of their environment which suggests that such structures primary
depend on the general properties of the parent galaxy. The merger rate of local
disk galaxies was estimated by Keel & Wu [16] to be 4.2 per Hubble time for
pairs and 0.33 per Hubble time extrapolated to all spirals.

This indicates that a majority of nearby disk galaxies have had upto 5 Gyr
(i.e. roughly corresponding to z≈0.5) to reach a quasi-stationary state. The cen-
tral potential well of typical spiral galaxies seems to be deep enough to avoid
strong influence from the environment. It is therefore reasonable to believe that
chaotic behavior observed in the central part of most disk galaxies is due to the
dynamics properties of the galaxies rather then a signature of a violent past.
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3 Regions of Chaos

The stability of stellar orbits in disk galaxies was studied by Contopoulos [5]
who used a 2D isochrone potential with a superimposed bar or spiral pertur-
bation rotating with a constant pattern speed. For weak and intermediate bar
perturbations, the main family x1 of periodic orbits is stable for values of the
Hamiltonian h < h(L1) where L1 is the unstable Lagrangian point. Close to
this point, the x1 family breaks up into an infinity of families. When the per-
turbation is increased, the main family becomes unstable for lower values of h
at a bifurcation of an important resonant family and remains unstable. Typi-
cal invariant curves for orbits in a bar potential show stable regions around the
families x1 and x4 (corresponding to retrograde orbits) representing non-periodic
orbits trapped around stable periodic orbits. Chaotic regions surround the stable
ones which decrease in size at stronger perturbations. The transition to chaotic
motions in spiral galaxies occurs at lower values of h than for bars with the
same amplitude. Contopoulos [5] concluded that the two main mechanisms for
producing this sudden increase of chaotic behavior are the breaking up of the x1
family into an infinity of families close to h(L1), and that it becomes unstable
at a resonance and remains unstable for higher h. The former mechanism is also
responsible for the assumption that bars end just inside their co-rotation (CR)
due to an increase of chaotic orbits [4].

Models for the response density in a realistic galactic potential with an im-
posed two armed spiral perturbation were made by Contopoulos & Grosbøl [6, 7]
in the case of normal spirals and by Kaufmann & Contopoulos [15] for barred
galaxies. The response was in phase and supported the imposed spiral between
Inner Lindblad Resonance (ILR) and Outer Lindblad Resonance (OLR) for weak
perturbations in agreement with the linear density wave theory [20]. For strong
spiral potentials, the chaotic region around CR increased and the spiral was only
nearly self-consistent between ILR and the 4:1 resonance (or -4:1 and OLR) due
to the 45◦ phase shift of the stable periodic orbits just outside the 4:1 resonance.
Nonlinear effects started to become important for spirals with a relative radial
force perturbation Fr≥5% [13]. It was found that satisfactory models which
matched imposed and response densities could be constructed for barred galax-
ies even in the regions close to CR where a significant fraction of the orbits was
chaotic.

In many N-body simulation fast bars are formed while a slower rotating,
more transient spiral pattern is seen outside [25]. This suggests that a spiral
galaxy may have several patterns with different angular speeds. One possible
explanation was given by Tagger et al. [28] who considered nonlinear coupling
of such spiral modes. Bars ending at their CR could in this way be coupled to or
drive outer spirals through their ILR. This mechanism provide a sharp selection
of possible pattern speeds and can excite both harmonics and sub-harmonics
such as m=1 waves [22]. Sellwood & Sparke [26] showed that even if bar and
spiral pattern in a galaxy had different pattern speeds its appearance would
most of the time suggest that the bar was connected to the inner part of the
spiral as seen most frequently. Less than 10% of the time, bar and spiral in such
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a b

Fig. 1. Relative maps in the K’ band of the central parts of two spiral galaxies: (a)
NGC 1566 and (b) NGC 4030. Spherical bulges were subtracted before the images were
de-projected. The maps were divided by their average radial profiles and presented in
negative i.e. dark indicates higher than average intensity. The full range from white to
black corresponds to ±30%.

systems would look fully separated such as in NGC 1566 (see Fig. 1a). Barred
galaxies with rings at the end of their bar may also be candidates for systems
with double pattern speeds. Although no detailed studies of the stability of orbits
in the interface region between a fast bar and a slow spiral have been made, it
is likely that chaotic behavior will develop there.

Whereas nonlinear response to a growing spiral perturbation will lead to
increased velocity dispersion [3] and therefore possibly to more stochastic orbits,
the most important locations where one would expect chaotic behaviors are the
main resonances and in particular the CR region. For strong perturbation, chaos
may be present for lower h at an important resonance. A region of special interest
is the termination of bars as it is likely to be close to CR, and in the case of
an outer spiral pattern rotating with a different angular speed, be even more
proven to chaotic behavior.

4 Chaos in the Galaxy

We have a unique opportunity to study the distribution of space velocities of
individual stars in our Galaxy after the Hipparchus satellite observed proper
motions and parallaxes for a large number of stars in the solar neighborhood.
The local velocity distribution was recently analyzed by Dehnen [11] and Fux
[12]. Velocities in the Galactic plane shows a significant structure beside its
general ellipsoidal shape. Whereas features associated to stars with (B–V)<0.4
(i.e. relative young) are still likely to trace their initial conditions at formation
(e.g. moving groups or open clusters), older stars will be more relaxed and can
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therefore be used to probe the Galactic potential. The distribution of older stars
with (B–V)>0.6 displays clear velocity features like the Hercules stream which
is absent in the diagram for the younger stars.

Using a realistic model of the Galaxy including a central bar, Fux [12] cal-
culated orbits of test particles and performed 3D N-body simulation to find the
possible origin of the major stream in the velocity distribution. He estimated
Liapunov divergence timescales for orbits representing the local velocity dis-
tribution to quantify their stability with various parameters for the bar. Also
comparing the velocity ellipsoid derived from N-body simulation, he concluded
that the Hercules stream could have several origins such as being induced by
cooler chaotic orbits from in the bar region or hot chaotic orbits with h > h(L1).
It was found possible but less likely that quasi-x1 orbits could contribute to
streams like the Hercules and Hyades.

The analysis of the velocities in the solar neighborhood provides a detail view
of a possible typical distribution in the disk of spiral galaxies. The number of
stars associated with the Hercules stream could suggest that up to 15% of the
stars just outside a weak bar in a disk galaxy could be chaotic. The size and
shape of features like the Hercules stream also show the difficulty in observing
similar structures in external galaxies due to projection effects.

5 Tracers of Chaos in External Galaxies

For external galaxies, one can in general not observe individual stars but only
integrated properties such as surface brightness distribution and line-of-sight-
velocity-profiles (LOSVP). This makes it significantly more difficult to distin-
guish between collections of stars following non-periodic orbits trapped around
stable ones and such which exhibit a chaotic behavior. One must rely on detailed
dynamic models of the galaxies to determine to what degree chaotic behavior is
present in a specific region.

Chaotic regions will typically have a phase space with less structure than
those occupied by stable motions although it is easy to construct models with
smooth appearance consisting of stable orbits (e.g. axisymmetric disks). In disk
galaxies, radial regions occupied by bars or spirals must have a high fraction of
ordered motions to support such structures. If more than one non-axisymmetric
mode exists in a galaxies (e.g. a bar and a spiral, or two spiral patterns), the
interface between them may indicate the location of a resonance and therefore
possibly a larger amount of chaotic motions than in the regions dominated by a
single mode. More chaotic motions would be expected in areas between modes
with different pattern speeds (e.g. in the region between the end of a bar and
the start of a spiral pattern). Thus, a zone with relative small azimuthal pertur-
bations between regions with significant bar or spiral modes would be a likely
candidate for increased chaotic behavior.

A more subtle indicator for an increased fraction of chaotic motions is a radial
variation of the amplitude of spiral modes. Although such variation also could
be caused by the interaction of different spiral modes, their details shape may be
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a b

Fig. 2. Relative maps in the K’ band of the central parts of two spiral galaxies: (a)
NGC 4939 and (b) NGC 6902. The representation is identical to that of Fig. 1.

used as a diagnostic. An interaction between spiral modes would yield sinusoidal
variation to the first approximation while an amplitude change due to a higher
fraction of chaotic orbits in resonance regions would appear as a decrease at spe-
cific radii corresponding to major resonances in the galaxy. Attenuation of dust
and patchy star formation would make it very difficult to detect such variations
within the main spiral structure but radial amplitude changes in relative strong
bars may display such features.

To illustration the way one may interpret the surface brightness distribution
in disk galaxies, the K′ images of four spiral galaxies are shown in Figs. 1 and
2. The K band was chosen since it better represents the mass distribution of old
disk stars although some population effects are still present [23]. A Sérsic r1/n

profile [27] was fitted to the bulge and subtracted together with foreground stars
before the images were de-projected. The bulge fitting was in some cases not
fully satisfactory and left residuals in the very central parts. The figures show
face-on, relative intensity maps normalized to the average radial profiles of the
galaxies.

The first example, NGC 1566, shown in Fig. 1a, is a grand-design spiral
galaxy classified as Sc(s)I in [24]. After the bulge was subtracted, a weak bar
with an amplitude of ∼7% became visible. Its position angle is offset with more
than 30◦ with respect to the start of the two armed spiral pattern and resembles
the N-body simulations with different pattern speeds for bar and spiral [26]. The
patchy nature of high intensity regions in the arms suggests that a significant
fraction of the light in the arms originates from young objects. Especially at the
start of the spiral arms just outside the bar, the star formation rate seems to be
enhanced. This could be caused by gas clouds following more stochastic orbits
in this region and therefore more likely collide when they encounter the spiral
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arms. Thus, the region between the bar and the start of the spiral is likely to
exhibit some chaos.

The galaxies NGC 4030 (see Fig. 1b) has the type Sbc(r)I in [24] and show
a more irregular arm structure in its inner regions while a two-armed pattern
prevails at larger radii. This could indicate the existence of separate spiral modes
as the inner pattern do not smoothly join the outer one. However, it is difficult to
judge whether all the arm sections, seen in the central region, are associated with
mass perturbations or some are mainly tracing recent star formation. If several
spiral modes do exist in this galaxy, one may expect an increase of chaotic
behavior where they interact.

In the case of NGC 4939 classified as a Sbc(rs)I, a strong bar is present with
three sets of symmetric arcs just outside as seen on Fig. 2a. The first set of arcs
is located just outside the bar but slightly offset relative to the orientation of
the bar. The next set is situated almost parallel to the bar and shifted ∼90◦

with respect to the first arcs. Finally, a third set is again offset by ∼90◦ with
the main grand design two-armed spiral pattern starting at the same radius.
The arcs have a relative smooth appearance which suggests that they are den-
sity enhancements in the disk although significant star formation are likely to
be present. The symmetry, alignment and shape of the arcs point to a stellar
dynamical origin associated to specific resonances and families of periodic orbits.
The exact relation can only be made after a detailed dynamic model is compared
to the intensity distribution. The radial regions between the arcs (more notice-
able for the two outer ones) have significantly smaller azimuthal variations than
for the arcs themselves and are possibly related to a higher amount of chaotic
orbits.

The last sample galaxy NGC 6902 of type Sa(r) is shown in Fig. 2b. This
galaxy has two spiral pattern where the inner and outer spirals are winding with
different orientations. This suggests that a major resonance is located at the
radius where the two patterns join each other. An increased star formation is also
observed at this location. Although the presence of spiral perturbations excludes
strong chaotic behavior, an increased fraction of chaotic orbits is expected.

A more indirect way to see the results of non-linear dynamic effects and
possibly increased chaotic behavior is to consider the distribution of the mean
relative amplitude of the main spiral arms as function of their pitch angle for
normal spirals [14] as shown in Fig. 3. It shows a lack of strong, tight spiral
which could be explained by non-linear effects starting to damp growing spiral
modes [3] when the relative radial force perturbation becomes large enough [13].

Two main features in the velocity distribution may be expected for regions
with a substantial fraction of chaotic motion, namely: a) a general increase in
the velocity dispersion and b) a non-Gaussian distribution. The chaotic orbits
are not trapped around stable, periodic ones and will typically have a wider
distribution function depending on the actual potential. Since it is only possible
to observe one velocity component for external galaxies, the viewing angle is
important as seen in the case of the velocity distribution in the solar neighbor-
hood [11, 12] where features like the Hercules stream only could be observed at
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Fig. 3. Average relative amplitude A2 of the main two-armed spiral pattern measured
in K for 53 normal spiral galaxies as function of the mean pitch angle i of their arms.

certain projections. Also the integration along the line of sight may mask ve-
locity structures which originates from chaotic behavior. One may also be able
to detect velocity features associated with the existence of multiple families of
periodic orbits near resonance regions where chaotic motion do not dominate.

6 Observational Considerations

Although the study of surface brightness distribution of disk galaxies may yield
some indications on possible locations of chaotic regions, it is essential to obtain
detailed kinematic data in order to support a claim of chaotic behavior. It is clear
from the analysis of the stellar velocity distribution in the solar neighborhood
[12] that a unique interpretation may be very difficult even with high quality
data.

The need for an accurate dynamic model demands that both the mass dis-
tribution in the disk and the total potential including a possible dark matter
component are estimated. The main problems in deriving a mass distribution
from surface photometry are population effects and attenuation by dust. These
effects are significantly reduced when using the near-infrared K band [23] as can
be seen in Fig. 4 where both B and K maps of NGC 2997 are shown. Strong
dust lanes are seen in the B band along the major arms but also in the inter-arm
regions. Further, and the bulge appears significantly more prominent in the K
band. Although attenuation by dust is strongly reduced in K, population ef-
fects must be considered as one notices strings of knots along the arms. Their
compactness and location close to the main dust lanes suggest that they are
associated to young objects (e.g. star forming regions). Besides these knots, it is
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a b

Fig. 4. Images of NGC 2997 observed in a) B band image and (b) K′ band. Foreground
stars were removed.

likely that a more defuse component of young stars contributes to the K band
luminosity in the arm regions.

The rotation curve of a galaxy can be obtained through long slit spectroscopy
(LSS) along the major axis or using an integral field unit (IFU) which yields a
full velocity map. It is simpler to used emission lines to measure the velocity
field, however, since they measure the gas kinematics corrections for possible
effects due to shocks, streaming motions and differences in velocity dispersion
compared to the stellar component must be applied. A safer approach is to
measure stellar absorption lines (e.g. MgI at 518 nm or CaII at 854 nm). They
still have to be corrected for velocity perturbations in the disk (e.g. spiral or
bar modes) before the average potential can be derived. Systematic effects due
to attenuation by dust [1] and asymmetric, non-Gaussian velocity profiles [18]
should also be considered.

It is also important to choose the region suspected to exhibit chaotic behavior
carefully including its position relative to its parent galaxy. If it is close to the
major axis of the galaxy, it is necessary to subtract the velocity component due
to the general rotation of the galaxy. At the minor axis, a contribution to the
LOSVP from the bulge may be significant. In all cases, the integration over the
finite thickness of the disk will introduce systematic effects.

Taking as an example the local stellar velocity distribution, one would have
to detect velocity features with a separation of ∼50 km/sec and an amplitude
contrast of less than 10%. This would require a signal-to-noise ratio (SNR) in
the range of 20-50 depending of number of free parameters in the model.
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7 Feasibility of Observing Chaos

Whereas it is trivial to obtain both deep K band surface photometry and long
slit spectra for deriving a general potential model of a disk galaxy with 4m class
telescopes, the observation of detailed LOSVP’s with sufficient SNR and spectral
resolution is significantly more challenging. To estimate the feasibility of such
observations with current state-of-the-art instrumentation, the ESO Very Large
Telescope (VLT) facility was taken as an example. Its four 8m unit telescopes are
located at Paranal in the Atacama desert, Chile, and provide excellent conditions
for this type of project. At present, four VLT instruments could be considered
for obtaining LOSVP, namely:

FORS1/2 have both imaging and spectroscopic modes in the visual part of
the spectrum. The maximum spectral resolution is ∼1700 for long slit mode.

VIMOS is a visual multiple object spectrograph with imaging modes. It has
several IFU modes including one with a field of almost 1 arcmin2 and a
spectral resolution of ∼2200.

FLAMES/GIRAFFE is a multi-fiber, high resolution spectrograph for visual
wavelengths. There are several small IFU’s and one 7′ × 11′ IFU head with
a lower resolution of ∼9000.

ISAAC is an infrared instrument with both imaging and long slit spectro-
scopic modes. It’s higher spectral resolution in the K band is ∼3000 which
is just sufficient to resolve the OH lines and thereby give access to the low
background inter-line regions.

The typical surface brightness at the end of a bar in a spiral galaxy is K
≈ 18 mag/arcsec2 with a color index (I-K) ≈ 2 mag. Strong spiral arms are
on average at least 1 mag. fainter while inter-arm regions typically are 1 mag.
fainter than the arms. To estimate the feasibility of observing chaos with the
VLT, the ESO Exposure Time Calculator(version 2.8.3) [2] was used assuming
a surface brightness in K = 18 mag/arcsec2 or I = 20 mag/arcsec2 with a seeing
of 0.8′′ and an airmass of 1.2. The results are given in Table 1 where spectral
resolution and typical SNR are listed for a 1 hour exposure. The SNR estimate
for ISAAC may vary significantly depending on the exact location of the lines
to be measured relative to OH lines.

By averaging over several spectral and spatial channels, a somewhat higher
SNR can be obtained. Even so, it is clear from the estimates in Table 1 that it is
just feasible to obtain an acceptable SNR and spectral resolution at the end of
the bar while regions in the spiral structure would require even larger facilities.

8 Conclusions

Studies of the past star formation rate and the morphology of galaxies in the
HDF’s indicate that a majority of local disk galaxies was formed at least 5 Gyr
ago and therefore has had time enough to reach a relaxed, quasi-stable state.
There are no evidence that bar and spiral structure depend on the environment
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Table 1. Performance of VLT instruments in spectroscopy mode for a 1 hour expo-
sure with 0.8′′ seeing. The wavelength (∆λ) and velocity (∆v) resolution per detector
pixel together with the Point Spread Function (PSF) are given for each configuration.
Finally, the number of electron from the source and the corresponding SNR are listed
as calculated by the ESO Exposure Time Calculator for an extended source with a
surface brightness of I = 20 mag/arcsec2.

∆λ ∆v PSF Source

Instrument Mode (nm/pix) (km/s/pix) (pix) (e−) SNR

FORS LSS 600I 0.132 50 4 329 27

LSS 1200R 0.075 34 4 274 26

LSS 1400V 0.063 36 4 154 15

ISAAC LSS MR 0.121 16 7 195 3:

VIMOS IFU R2150 0.061 29 5 248 10

IFU R1000 0.273 116 5 1531 31

GIRAFFE IFU LR04 0.020 11 3 62 5

of the parent galaxy. Thus, chaotic behavior observed in disk galaxies is likely
to have an internal dynamic origin if there is no evidence of recent mergers.

The most likely regions to find chaos in spiral galaxies are the major stellar
resonances in the disk especially CR. If a galaxy hosts several spiral modes with
different angular speeds (e.g. a fast bar and a slower rotating spiral), one would
expect increased chaotic behavior in the interface region between them.

The analysis of the stellar velocity distribution in the solar neighborhood
show that some streams (e.g. Hercules) may originate from a population of stars
with chaotic orbits. Even with access to high quality data for individual stars,
the interpretation is ambiguous and rely on detailed comparisons with dynamic
models.

For external galaxies where only integrated properties can be observed, it is
possible to identify regions where chaotic behavior may be expected but it is
essential to compare detailed LOSVP with dynamic model to access the proba-
bility of chaos. Candidate regions are major resonances and interface zones be-
tween different spiral modes. It is important to consider possible contamination
of measured velocity profiles by galactic rotation, disk thickness and attenuation
by dust.

Whereas surface photometry and basic kinematics data can be obtained with
4m class telescopes, velocity profiles with sufficient spectral resolution and SNR
are much more demanding. With current state-of-the-art facilities like VLT, it is
just feasible to access a surface brightness of I ≈ 20 mag/arcsec2 corresponding
to the end of the bar in a typical disk galaxy. Observation to search for chaotic
behavior in the disk related to the main spiral structure would only be possible
with significantly larger facilities.
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Observational Determination
of the Gravitational Potential and Pattern Speed
in Strongly Barred Galaxies

Per A.B. Lindblad and Per Olof Lindblad

Stockholm Observatory, AlbaNova, SE–10691 Stockholm, Sweden

Abstract. In order to compute stellar orbits in spiral galaxies the gravitational po-
tential and its pattern speed must be known. Observationally, these parameters are
difficult to determine, in particular for strongly barred galaxies. We will briefly review
different methods and illustrate in more detail the case where the problem has been
approached by numerical gasdynamical simulations.

1 Introduction

When computing orbits in real galaxies one needs to know the gravitational
potential and its pattern speed, i.e. the angular velocity of its non-axisymmetric
component. In the quasi-steady density wave picture of galaxy dynamics these
two quantities are considered to be more or less constant throughout the system
and over a certain period of time.

To derive the gravitational potential from photometry requires very accurate
multicolour photometry to very faint levels with corrections for extinction and
assuming mass-luminosity ratios for a mixture of stellar populations. To this
must be added the potential of an unknown amount of dark matter. Where the
symmetry plane of the galaxy is suitably inclined to the plane of the sky, radial
velocities will give information of the kinematics in the plane of the galaxy,
complementing the information from photometry.

The axisymmetric part of the potential in the plane of the galaxy is generally
described by the rotation curve, whereby we mean the set of circular orbital
velocities as a function of the distance from the centre, given by the axisymmetric
Fourier component of the density distribution.

The interplay between the orbital motions and the pattern speed gives rise
to various resonance phenomena, of which we in particular note the corotation
resonance (CR) and the Inner (ILR) and Outer (OLR) Lindblad Resonances.
The CR occurs where the orbital angular velocity is close to the pattern speed.
Any regular non-circular particle orbit can be described as a closed orbit with n
pericentra, rotating with a certain angular velocity. The rotation can be slower
than the mean orbital velocity, so that the particle describes the rotating closed
orbit mainly in the forward direction, or faster, so that the particle describes
the closed orbit mainly in the retrograde direction. Where the rotation of the
orbit, for n = 2, is close to the pattern speed, we have an ILR in the former
case and an OLR in the latter. For one and the same pattern ILR and OLR fall
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on different sides of CR. There remains the possibility that one and the same
system may contain different structural components each with its own pattern
speed [10].

In the case of a weak bar with small deviations from circular motion we
have a circular corotation region, where the circular angular velocity is close
to the pattern speed. This case is well demonstrated by England, Hunter and
Contopoulos [2] by hydrodynamical model computations of motions in various
bar potentials. Figure 1 shows the case of a rather weak bar perturbation. To
the left is shown the gas density response pattern when the gas has been settled
into a quasi-steady state, and to the right the gas velocity vectors in a frame
rotating with the pattern.

Fig. 1. Gas density response (left) and velocity vectors (right) of a rotating bar per-
turbation of moderate strength. The system rotates clock-wise. A straight line in the
figures shows the position and extent of the bar. From [2]

The circular corotation region of low velocities is clearly seen in this figure.
It contains two vortex regions, corresponding to the Lagrangian L4 and L5 equi-
librium points of the restricted 3-body problem. In these regions the gas rotates
counter clock-wise and expands from the vortex centre.

The case of a very strong bar, as shown in Fig. 2, however, is different. In
the bar region there is no continuous set of nearly circular orbits and no circle
of corotation resonance. Here the corotation region has broken down. There are
still the two vortices placed at right angels to the bar, now very pronounced.
In addition, there are two vortices close to the gas density maxima in the bar,
around which the gas now flows in the same direction as the bar rotation and
inwards towards the vortex centre. There also seem to be low velocity corotation
regions outside the ends of the bar. The entire bar is close to corotating.
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Fig. 2. Gas density response (left) and velocity vectors (right) of a rotating very strong
bar perturbation. The system rotates clock-wise. A straight line in the figures shows
the position and extent of the bar. From [2]

To derive a rotation curve in the bar region from the observed radial velocities
in such a galaxy would be a very difficult task and its usefulness might be
questioned.

2 Methods to Determine the Pattern Speed

A sophisticated scheme to derive the pattern speed for a non-circular-symmetric
pattern in open spiral and barred galaxies was suggested by Tremaine and Wein-
berg [11]. The scheme is based on the continuity equation and is rather model
independent. It is assumed that the disk has a well defined pattern speed, that
the surface brightness of the tracer obeys the continuity equation, and that there
is no streaming velocity normal to the disk plane.

The continuity equation is integrated over a strip parallel to the apparent
major axis of the system. The gain and loss of matter across the strip, due to
the rotation of the pattern, is related to the radial velocities and luminosity
distribution along the strip.

Figure 3 illustrates the version of this method designed by Merrifield and
Kuijken [9], here applied to the early type SB galaxy NGC 4596 [3]. The spectra
are added all along the slit, and the right side shows the Doppler broadening
function of this single absorption line spectrum determined by means of a templet
star. This is done for three different slit offsets along the minor axis. On the
bottom we see the continuum luminosity distribution along the same slits. Each
pair gives a point in the diagram. The slope of the line is proportional to the
pattern speed multiplied with the sin i of the inclination of the plane of the
galaxy to the plane of the sky. This can be extended to any number of slits.

The method has been applied to a handful of early type barred galaxies. Its
potential usefulness, however, for H i observations in barred galaxies is doubtful.
Figure 4 shows an optical image as well as the total neutral hydrogen map of the
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Fig. 3. Mean line-of-sight velocities versus luminosity centroid position for three slits
parallel to the major axis of NGC 4596. From [3]

Fig. 4. An optical ESO 3.6 m prime focus plate (left) and total H i column density
map (right) of NGC 1365. The ellipses enclose the region where the rotation curve is
believed to give a reliable description of the axisymmetric forces. The bar major axis
and the line of nodes are marked as straight lines running through the centre. From [5]

barred galaxy NGC 1365. Typically, H i disappears in the bar region, where the
deviation from circular symmetry is the largest and the method is most useful.
The continuity equation is not valid. In the spiral arms H i is forming stars and
along the bar H i is transferred to molecular hydrogen streaming towards the



Potential and Pattern Speed in Barred Galaxies 217

centre. Our efforts have shown that the method cannot be meaningfully applied
to the H i data for NGC 1365.

Several authors have tried to identify the positions of a corotation circle, or
other specific resonances, in real galaxies and from the rotation curve get the
pattern speed. In some cases this procedure seems to start from assumptions
that should be proven in the end.

A method, based on the linear density wave theory, has been suggested by
Canzian [1]. According to this theory the residual radial velocities along the line
of sight, when the rotation curve has been subtracted, should be proportional to
sin Φ close to the ILR, where Φ is the central angle in the plane of the galaxy,
and proportional to sin 3Φ close to the OLR. At corotation the amplitudes of
the two functions should have a specific ratio, dependent of the shape of the
rotation curve. The method is very sensitive to the proper derivation of the
rotation curve and the residual velocities. Being based on the linear density
wave theory it should not be applicable to barred spirals.

If there is no easy way out, the ultimate method is to make a simulation of
the entire galaxy, taking into consideration all available observational informa-
tion. Several authors have done this in different ways. In the course of such a
simulation procedure one should get a rotation curve, perturbing potential and
pattern speed, consistent with the observed velocity field and giving resonance
regions compatible with the observed morphology.

3 The Case of NGC 1365

To illustrate the procedure, let us consider the case of NGC 1365 which was
simulated by Per A.B. Lindblad in a project at Stockholm Observatory, in which
we collaborated with E. Athanassoula in Marseille [5]. A similar analysis has been
performed, among others, by Weiner, Sellwood, Williams, and van Gorkom in
the case of the SB galaxy NGC 4123 [13] [12], using the same gasdynamical code.

NGC 1365 (Fig. 4) is one of the more thoroughly studied nearby isolated
barred galaxies [6]. Its inclination to the plane of the sky of 40◦ is suitable for
radial velocity studies of the kinematics, and the inclination of the bar to the
line of nodes close to optimal for a study of streaming both across and along the
bar. The distance is 18 Mpc, which gives a scale where 1′′ corresponds to 100
pc. With a diameter of 11′, or 66 kpc, it is a supergiant galaxy.

Detailed VLA observations in H i have been presented by Jörsäter and van
Moorsel [4]. The total H i density map is given in Fig. 4. As was mentioned, H i
is very scarce in the bar region. In the very nucleus H i is seen in absorption.

However, the central region was filled in with velocities from long slit emission
line spectra, and a complete radial velocity map for the interstellar gas was
constructed [7]. In Fig. 5 we see the characteristic twist along the bar and wiggles
along spiral arms.

In Figs. 4 and 5 the ellipses separate the bar region, intermediate region
and outer region. As the basis for the rotation curve we adopt the azimuthally
averaged rotation curve of Jörsäter and van Moorsel. However, in the bar region



218 Per A.B. Lindblad and Per Olof Lindblad

Fig. 5. The observed radial velocity field of NGC 1365. The contour interval is 20 km/s,
and the systemic velocity is drawn as a thick line. The ellipses are the same as in Fig. 4.
From [5]

such an azimuthally averaging method does not give a good approximation to
the rotation curve, and in the outer region the system is warped, as seen from
the kinematics in Fig. 5, which again makes the rotation curve uncertain.

To estimate the perturbing potential, we use infrared photometry, as the bar
region shows a multitude of dust. We choose an infrared J-band image obtained
as part of the Ohio-State University Bright Galaxy Imaging Survey (Fig. 6).
This image was analysed in terms of even azimuthal Fourier components. As
the spiral arms seem firmly attached to the ends of the bar, we assume that
the spiral part of the structure, at least for a considerable time, has the same
pattern speed as the bar.

At the start of the fitting procedure we let the axisymmetric part of the
potential be represented by the Jörsäter–van Moorsel rotation curve. The per-
turbing potential is derived from the infrared surface photometry, where the
mass/luminosity ratio M/L (in arbitrary units, as the photometry is not abso-
lutely calibrated) is kept as a free parameter. This free parameter also compen-
sates for effects of the unknown thickness of the bar.

The model fit in the intermediate region is rather insensitive to the exact
shape of the rotation curve in the bar region. Thus, we can now make simulations
with a sequence of different pattern speeds and M/L ratios to get the best fit to
the structure in the intermediate region. The detailed structure in this region is
particularly sensitive to the choice of pattern speed, and this speed can now be
fixed to within a few km s−1 kpc−1, at a value of 18 km s−1 kpc−1 for NGC 1365.
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Fig. 6. Inclination corrected J-band image of NGC 1365. From [5]

With the chosen value for the pattern speed we now adjust the Jörsäter–van
Moorsel rotation curve in the bar region as well as the final choice of the per-
turbing M/L ratio, until the simulation reproduces the observed radial velocities
from slit spectra as well as the morphology of the dust lanes along the bar, both
of which lay constraints on the position of the ILR.

The result is seen in Fig. 7, where density contours of the model are overlaid
the H i total column density map. The slight mismatch in the outer region is due
to the steep decline of the Jörsäter–van Moorsel rotation curve. If raised about
10 km/s in the outer region, the OLR and spiral arms move outward (i.e. a less
drastic warp is assumed) and the match is improved.

Figure 8 compares the observed radial velocity field with that given by the
model as observed from the same angle. The forced bisymmetry of the model
limits the fit in both Figs. 7 and 8. In spite of this, the main features are re-
produced fairly well. The velocity pattern in Fig. 8 shows the characteristics of
orbits elongated along the bar. The shocks along the bar are smoothed in frame
(a) due to the procedure with which the velocity field was constructed from ran-
domly positioned slits. Thus, here a comparison should be made directly with slit
measurements. Figure 9 shows this for a slit placed perpendicular to the bar 29′′

East of the nucleus. The jump across the shock of 300 km/s is well reproduced.
Thus, we arrive at a possible variation of the axisymmetric forces and a

pattern speed which are in agreement with the observed morphology and velocity
field. In contrast, Weiner et al. [12] through accurate photometry and by the
perturbations required, assuming the same M/L for disk and bar, derive by
simulations similar to ours this M/L and deduce the mass of the halo required to
reproduce the outer rotation curve. This means that they use the perturbations
from the bar to infer a M/L for the disk and bar and get the mass of the dark
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Fig. 7. Model density contours overlaid the total column H i density map. From [5]

Fig. 8. Comparison between the observed velocity field in NGC 1365 (a) and that
given by the model (b). The orientations of the bar axis in PA 92◦ and the minor axis
of the galaxy in PA 130◦ are shown as straight lines. From [5]

halo component. For NGC 1365 this would not be safe due to the warp, which
makes the outer rotation curve uncertain.

The gas flow in a frame rotating with the pattern is shown in Fig. 10, where
the circles mark the ILR, CR and OLR resonance positions. Only half of the
velocity field is shown. The orbits show the familiar twist around the ILR [8] as
well as the change of direction of the flow at the shock fronts along the bar. The
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Fig. 9. Radial velocities along a slit placed perpendicular to the bar 29′′ East of the
nucleus. Open circles: observed velocities. Solid line: model velocities. Dotted line: pure
rotational motion according to the rotation curve. From [5]

spiral arms extending from the ends of the bar appear also for a purely barred
perturbation, but the spiral part of the potential is necessary to drive the arms
through corotation. The vortex regions at CR are apparent.

Thus, through detailed comparison between observations and models, esti-
mates of the pattern speed as well as total gravitational potential can be obtained
for individual galaxies. This will permit us to compute stellar orbits in rather
realistic, but in our case bi-symmetrical, galaxy potentials.

Fig. 10. Gas flow lines from the model overlaid gray scale maps of the same model.
Full scale (a), bar region (b). From [5]
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Abstract. To study dynamic properties of the gaseous disk of the grand design spiral
galaxy NGC 3631 we calculate the Lyapunov characteristic numbers (LCN) for differ-
ent families of streamlines in the disk. For the trajectories near separatrices of the giant
vortices and near saddle points presenting in the velocity field, the LCN turned out to
be positive. The result is insensitive to the method of the calculation. Both methods —
using two trajectories and based on linearized equations — give the identical results.
The values of the LCN in the gaseous disk of NGC 3631 are independent on the Rie-
mannian metric used for the calculations in agreement with the classical mathematical
theorem. The spectra of the ‘short-time’ LCN (stretching numbers) evaluated for the
same trajectories turned out to be non-invariant. We confirmed this result obtained for
the real galactic disk on classical model examples.

1 Introduction

The main topic of our paper consists in the demonstration of a fact that results
of analysis of the observed velocity field of the galactic disk can serve as a source
of our knowledge of the stochastic galactic dynamics.

This topic has relation to a gaseous disk rather than to stellar one. In spite
of the evident recent progress in the measurements of the line-of-sight velocity
field of stellar disks, our knowledge of stochastic stellar dynamics of external
galaxies is based for the most part on theoretical investigations. Information in
this respect from observational data on stellar velocity fields is moderate for the
following reason.

As a rule, the external galaxies are not resolved into individual stars. Using
the analysis of absorption lines we can measure the line-of-sight velocity field of
the stellar population averaged over some local spatial region. The trajectory of
this region of the stellar disk may differ qualitatively from the trajectories of the
stars in the same region. For example, a stellar bar rotates as a solid body, while
the stellar orbits in the bar may be complicated and far from a simple rotation.
Such a behaviour is typical for collisionless selfgravitating systems.

From observational data we can construct gravitational potential as a func-
tion of coordinates. But some variations of the potential within errors of obser-

G. Contopoulos and N. Voglis (Eds.): LNP 626, pp. 223–234, 2003.
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vations often result in the transformation of regular stellar orbits into chaotic
ones and vice versa. This may lead to artefacts.

At first glance the line-of-sight velocity field of a gaseous disk also can not
be used directly to study the stochastic dynamics of the disk. However, the use
of the method of restoration of 3D velocity field from the observed line-of-sight
velocity field [1], [2] enables to determine regular and chaotic trajectories by the
calculation of the Lyapunov characteristic numbers (LCN) [3].

In this case a natural question may appear. It is well known (see, e.g. [4]), that
the LCN is calculated for the trajectories in the phase space, while the restora-
tion method [1], [2] gives 3D velocity field in the coordinate space1. Hence it
allows to see the behaviour of the trajectories in the coordinate space rather
than in the phase one. The book [5] may help to resolve this question. In this
book the hydrodynamical equations of 3D stationary incompressible flows are re-
duced to nonstationary dynamical equations in 2D phase space. In other words,
in this book it is shown, that the problem of analysis of the properties of tra-
jectories in 3D stationary incompressible flows is equivalent to the problem for
nonstationary dynamical systems with 2D phase space. These systems, evidently,
can demonstrate both regular and chaotic motions. The same is done in [6] for
compressible 3D stationary flows. The idea of the reduction is the following.

A steady-state 3D flow is described by the set of equations:

dx

dt
= vx(x, y, z) ,

dy

dt
= vy(x, y, z) ,

dz

dt
= vz(x, y, z) , (1)

which can be rewritten in the following form:

dx

vx
=

dy

vy
=

dz

vz
= dt . (2)

For our aim, a more convenient notation is

dx

dz
=

vx

vz
≡ f1(x, y, z) ,

dy

dz
=

vy

vz
≡ f2(x, y, z) . (3)

The latter equations show that we are dealing with the “nonstationary” problem
for a dynamical system in 2D phase space (x, y). The variable z is playing the
role of time τ :

dx

dτ
= f1(x, y, τ) ,

dy

dτ
= f2(x, y, τ) . (4)

These equations describe the dynamical systems where stable and unstable tra-
jectories may coexist. As it follows from above (and [5], [6]), that corresponds
to the coexistence of stable and unstable streamlines in 3D coordinate space.
1 In more details see [1]–[3].
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2 Restored Velocity Field
of the Grand Design Spiral Galaxy NGC 3631

In Fig. 1 one can see the reconstructed velocity field of NGC 36312 in the galactic
plane with superimposed lines of constant phase of the vertical (perpendicular
to the galactic plane) velocity. Squares mark the maxima of the absolute values
of the vertical velocity of gas at each radius. Asterisks show the locations of
the zeros of the vertical velocities. The vertical velocity amplitude is not shown.
Thin lines mark the location of the vortices — anticyclones (upper left and lower
right) and cyclones.
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Fig. 1. The reconstructed velocity field of NGC 3631 in the galactic plane and super-
imposed lines of constant phases of the vertical motions. Squares mark the maxima
of the absolute values of the vertical velocity of gas at each radius. Asterisks show
the locations of the zeros of the vertical velocities. Thin lines show the location of the
vortices — anticyclones (upper left and lower right) and cyclones.

2 A solution of the ill-posed problem of the reconstruction of three component velocity
field from the observed line-of-sight velocity field of gaseous disk of grand design
spiral galaxies is described in papers [1], [2], [7], [8] and in the review [9].
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From observations it follows that gaseous disks of spiral galaxies – the set of
their main parameters – lie close to the boundary of their dynamic instability
[10]. That might seem natural: in the course of developing the instability, the
velocity dispersion grows, and the disk approaches the boundary of the insta-
bility [9]. Since the instability generating both the spiral arms and vortices is
saturated, then the 3D motion of the gas should be quasi-stationary in the refer-
ence frame corotating with the density wave. It means that trajectories coincide
with streamlines in 3D coordinate space. In the regions close to those where Vz

equals to zero, every fluid particle participates in 2D motion only and hence its
trajectory should coincide with its 2D streamlines.

If vortex lie in the regions of the 2D motion, the fluid particles trapped in the
vortex are separated from the transiting (untrapped) ones by the separatrix –
the last closed streamline around the vortex center. As we can see in Fig. 1,
the vortices with centers close to the zeros of the vertical motions (Vz = 0)
are surrounded by closed separatrices. Two cyclones located far from the zeros
do not demonstrate the presence of a clear separatrix in the 2D streamlines.
These facts can be considered as an evidence of the real three-dimensionality of
the velocity field of the gaseous disk. The whole structure of the reconstructed
velocity field in Fig. 1 agrees with the assumption of its quasi-stationarity.

Besides the separatrices surrounding vortices the 2D velocity field in the
disk plane contains saddle points (marked by crosses in Fig. 2). Choosing the
beginning of streamlines near separatrices or near the saddle points, one can
see that these streamlines diverge. We would like to know, if this divergence is
exponential or not, in other words, if the streamlines are chaotic or regular. To
clarify it we need to calculate the LCN.

3 The Calculation
of the Lyapunov Characteristic Numbers

In the case of exponential divergence of the trajectories we have

d(t) ∼ d0e
λt , (5)

where d0 is the initial separation between neighbouring trajectories, d(t) is the
separation for the time t, λ is a rate of the exponential divergence and is equal
to the maximum LCN.

The rigorous definition of the LCN is [4]

λ = lim
t→∞, d0→0

1
t

ln
d(t)
d0

. (6)

In our case of the gaseous disk of NGC 3631, it is difficult to use the definition
of the LCN (6) for the following reasons:

1) the duration of observations is much smaller than the characteristic time λ−1

of the exponential divergence of two points moving along nearby trajectories;
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Fig. 2. The divergent trajectories near the vortices separatrices and a set of trajec-
tories near the saddle point superimposed on the restored two dimensional velocity
field. Thick solid lines show the trajectories which are used to calculate the stochastic
characteristics in the vicinity of the vortices. “o”-signs mark the centers of the vortices.
“x”-signs mark the saddle points. Also, non-divergent trajectories near the center of
the disk are shown.

2) the presence of a minimal distance dmin between two trajectories owing to a
finite spatial resolution of measurements δ, dmin ≥ δ;

3) the ratio of the characteristic scale Rch of the velocity field variations to the
resolution δ is not too large, moreover there are some regions where Rch �
δ;

4) we cannot measure the velocity field of the overall disk but only of a part of
the disk.

To overcome the first difficulty we use the mentioned above property of the
stationarity of the velocity field.

The second and the third difficulties restrict an allowable maximal length of
the trajectory (and thus a maximal time T of the calculation of the LCN). First,
a trajectory can eventually leave the area, for which the velocity field is defined.
Second, a trajectory may come to the region where the characteristic scale of the
velocity field variations is of the order of the spatial resolution of the velocity
data, Rch � δ (according to the second restriction), that contradict to the linear
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Fig. 3. The method of the LCN calculation. The reference trajectory is denoted by the
longest solid line and some auxiliary trajectories by dashed curves with short regions
of solid curves.

approximation condition d/Rch � 1. Hence, these regions are “forbidden” for
the method used to find the LCN.

In the previous paper [3] (hereafter Paper I) we tried to overcome the dif-
ficulty, connected with the limitation on the maximal length of the trajectory,
using a method proposed by Casartelli et al. [11] and described in the well-known
monograph [4] (see also [12], [13], [14]).

In our case we specify the number of steps n and divide the given time
interval [0,T ] into n time intervals ∆T = T/n. Choosing the initial deviation
vector w1(0) we evaluate two trajectories from ζ0 and ζ0 +w1(0) and determine
w1(∆T ) (see Fig. 3). After each step, following [11], we will renormalize the
deviation vector to the initial length d0, preserving its direction

ζi+1(0) = ζ(i∆T ) + wi+1(0),

wi+1(0) =
d0

di
wi(∆T ), (7)

where di ≡ d(wi(∆T )).
According to [11] and [15], for sufficiently large T the reliable estimate of the

LCN (6) is the following:

λ ≈ λ(n) =
1
T

n∑
i=1

ln
di

d0
. (8)

The described method implies integration over two trajectories — the refer-
ence trajectory, shown in Fig. 3 by the thick solid line, and an auxiliary trajec-
tory.

The limited length of the trajectory used in the calculations poses a question
on the accuracy of the LCN determination. We consider the results to be reliable



Observational Manifestation of Chaos 229

when:
ξ ≡ λ(n)T � 1 . (9)

Sometimes, the trajectories are so short that the condition (9) is not fulfilled.
According to [13] and [14] the reliability can be improved, if one takes a set of
trajectories instead of one. In this case the LCN is calculated as follows:

λ(n) =
1
N

N∑
k=1

λ
(n)
k , (10)

where λ
(n)
k is calculated according to the formula (8), using the k-th trajectory

as a reference one, N is the total number of the basic trajectories. The reliability
condition turns into

η ≡ ξN = λ(n)TN � 1 . (11)

All details of the calculations of the LCN for different families of streamlines
in the gaseous disk of NGC 3631 are contained in Paper I. Our calculations of
the LCN led to the conclusion, that the gaseous disk of NGC 3631 contained
both the regular and chaotic streamlines. The formers are located near the disk
center, the latters – in the vicinity of separatrices of vortices and near the saddle
points.

To perform the calculations of the LCN one needs to define the Riemannian
metric d. The general form of the metric used in the present work is

d(w) =
√

g1x2 + g2y2, (12)

where x and y are the Cartesian coordinates of the vector w. Metrics d differ
by the positive metric coefficients g1 and g2. For the sake of simplicity we refer
to different metrics as follows: (g1, g2). For example, we often use metric (1,1),
that implies d =

√
x2 + y2.

The Oseledec theorem [16] claims that the result of the LCN calculation
should not depend on the Riemannian metric. It would be interesting to note
that for the considered real system the LCN, calculated using different metrics,
also deviate very little (see Fig. 4). Namely, near the separatrix of the anticyclone
for the metric (1,1) λ(n) = 0.8768T−1

0 , for the metric (1,0) λ(n) = 0.8931T−1
0 ,

for the metric (0,1) λ(n) = 0.8513T−1
0 (T0 = 7.5 · 107 years)3.

In parallel with the use of the mentioned above technique, which employs two
trajectories for evaluation of the LCN, we recalculated LCN for the same regions
using the linearized equation for the deviation vector w (see [4]). It turns out
that for the sufficiently smooth vector field interpolation4 the results obtained
in both cases are identical.
3 According to the metric definition if x2 or y2 is positive, we should have d > 0.

Rigorously speaking, metrics (g1, g2) = (1,0) and (0,1) do not fulfil this requirement.
To overcome this obstacle one can assume that the corresponding coefficients have
infinitely small positive values.

4 Here we use fourth order tensor product spline interpolation.
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Fig. 4. The behavior of λ(i) with i∆T/T0 for trajectory near the separatrix of the
anticyclone, calculated for different metrics: (1,1) – solid line, (1,0) – dashed line, (0,1)
– dotted line. Number of time steps n = 1000.

4 Spectrum of the Stretching Numbers

The expansion coefficient (in terminology of Oseledec [16]) or the stretching
number [17] [13] [14] is defined as follows:

ai =
1

∆T
ln

di(∆T )
d0

. (13)

Using (13) one can find the spectra of the stretching numbers for real objects.
According to the definition [13], [14], the spectrum of the stretching numbers is

S(a, x0, y0) = lim
N→∞

1
N

dN(a)
da

, (14)

where dN(a) is the number of appearances of the stretching number ai in the
interval (a, a + da).

The spectra, calculated for chaotic and regular trajectories using different
metrics are shown in Figs. 5–8. In all cases, the spectra are not invariant to the
metric change.

This is very interesting fact, since as it follows from (8), (13) and (14) the
LCN is the first moment of the spectrum of the stretching numbers

λ =
∫

aS(a)da, (15)

but the LCN itself preserve the mentioned invariance.
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Fig. 5. Spectra for the stochastic trajectory in the vicinity of the anticyclone (see
Fig. 2), calculated for different metrics: (1,1) – solid line, (1,0) – dashed line, (0,1) –
dotted line. Number of time steps n = 1000.
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Fig. 6. Spectra for the stochastic trajectory in the vicinity of the cyclone (see Fig. 2),
calculated for different metrics: (1,1) – solid line, (1,0) – dashed line, (0,1) – dotted
line. Number of time steps n = 1000.

The dependence of the spectrum form on the metric has not been known
previously, although it can be checked that it holds either in theoretical and real
observable systems. Figures 9, 10 show the LCN and the spectra, calculated for
different metrics for the well-known standard (Chirikov) map and the Lorenz
attractor. One can see that in both cases the LCN, calculated using different
metrics are equal, whereas the forms of the spectra are different.
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Fig. 7. Spectra for the set of stochastic trajectories near the saddle point (see Fig. 2),
calculated for different metrics: (1,1) – solid line, (1,0) – dashed line, (0,1) – dotted
line. Number of time steps n = 1000.
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Fig. 8. Spectrum for the regular trajectory around the center of the disk (see Fig. 2),
calculated for the metric (1,1).

5 Conclusions

In conclusion let us summarize the dynamical properties of the gaseous disk of
NGC 3631 revealed in this paper and the Paper I.
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Fig. 9. The LCN (left figure) and the spectra (right figure) for the standard (Chirikov)
model, calculated for different metrics: (1,1) – solid line, (0,1) – dashed line, (1,0) –
dotted line.
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Fig. 10. The LCN (left figure) and the spectra (right figure) for the Lorenz attractor)
model, calculated for different metrics: (1,1) – solid line, (0,1) – dashed line, (1,0) –
dotted line.

1. The three component velocity field restored from the observed line-of-sight
velocity field of the gaseous disk of the galaxy NGC 3631 is stationary and
demonstrates the presence of both regular and stochastic trajectories of the
gas.

2. The regular trajectories are observed near the center of the disk, the stochas-
tic ones — near the saddle points and the separatrices of giant vortices pre-
senting in the velocity field.

3. The type of the divergence of the trajectories was determined by two different
methods of the calculation of the Lyapunov characteristic numbers (LCN):
using two neighbouring trajectories and based on the linearised equations.
Both methods gave identical results.

4. The LCN obtained for the real galaxy are turn out to be invariant to the
metric change, in full agreement with the Oseledec mathematical theorem
[16].

5. For the first time it was demonstrated, that the form of the spectra of the
‘short-time’ LCN (stretching numbers) varies with the metric change.
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6. The correctness of two latter conclusions was confirmed also for the classical
model dynamical systems — the standard map and the Lorenz attractor.
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Quarter-Turn Spirals in Galaxies

Evgenii Polyachenko

Institute of Astronomy RAS, 48 Pyatnitskaya st., Moscow 117647, Russia

Abstract. Observations in the optical show that grand design spirals consist of a set
of principle arms and characteristic near-circular extensions that can be described as
quarter-turn spirals. Arguments are presented in favor of the idea that the latter set
of spirals is caused by the response of the material of the disk to the gravitational
potential of the main spiral arms. The peculiarities of the potential in the narrow
transitional annulus between the regions of spiral and multipole behavior can explain
basic characteristic features of the quarter-turn spirals (their angular length and small
pitch angles).

1 Introduction

Optical observations give many examples of grand design spiral galaxies in which
arms consist of two parts: strong symmetric primary spirals, and adjacent faint
secondary spirals. Figure 1 shows three images of such galaxies. The transition
between the parts is marked by steep brightness gradients and by changing in
the pitch angle of the arms.

As it is shown in many papers, for many spiral galaxies the last part of the
optical grand design spirals almost vanishes in the near infrared wavelengths
(see, e.g., [1], [2], [3]). Such a discrepancy between optical and near IR data
suggests possible different formation mechanisms of these parts and allow one
to consider the secondary spirals as a specific part of a whole spiral structure.

Basic characteristic features of the secondary spirals can be established by
studying the azimuthal Fourier spectra of brightness maps for such galaxies:

NGC 1566 NGC 4321 NGC 5364

Fig. 1. Examples of galaxies with QTS
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1. Their pitch angles are small (compared to those of the primary spirals);
2. Their angular length is of about 90◦.

Due to the first two features one may refer to the secondary arms as the quarter-
turn spirals (QTS). Lack of the QTS in the near IR implies that

3. The secondary spirals formed mainly from the cold component of the galactic
disk.

Below, the explanation of the QTS phenomena is presented.

2 The Simplest Theory

In this section the simplest theory is described, in which QTS are treated as the
disk response to the gravitational potential of the primary spirals. The calcula-
tions are carried out under the following basic assumptions:

• the galaxies under consideration have well defined spiral structures with
certain pattern velocities;

• the simplest approximation of a cold 2-dimensional disk can be used (it is ex-
pected that this approximation contains the main effects, and the corrections
for the velocity dispersion are small);

• linear theory of the disk response can be used;
• QTS are located sufficiently far from the main resonances.

Accordingly, the density response to the gravitational potential can be calcu-
lated by employing the linearized hydrodynamical equations with the pressure
equal to zero

∂σ̃

∂t
+ Ω

∂σ̃

∂ϕ
+

1
r

∂

∂r
(rσ0vr1) +

σ0

r

∂vϕ1

∂ϕ
= 0,

∂vr1

∂t
+ Ω

∂vr1

∂ϕ
− 2Ωvϕ1 = −∂Φ1

∂r
,

∂vϕ1

∂t
+ Ω

∂vϕ1

∂ϕ
+

κ2

2Ω
vr1 = −1

r

∂Φ1

∂ϕ
,

where vr1 and vϕ1 — the perturbed velocities, κ is the epicyclic frequency,
κ2 = 4Ω2 + rdΩ2/dr, Ω = Ω(r) is the disk angular velocity, σ̃ and Φ1 are the
disk (density) response and the potential of the primary spirals, respectively. As-
suming that all perturbations are proportional to the exponent ei(mϕ−ωt), one
can obtain the response in the form

σ̃ = −1
r

∂

∂r

(
rε

∂Φ1

∂r

)
+ ε

m2

r2 Φ1 +
2m

rω∗
∂

∂r
(εΩ)Φ1, (1)

where

ε ≡ σ0(r)
ω2∗ − κ2 (2)

is the gravitational analog of dielectric permittivity [4], [5]; ω∗ = ω − mΩ(r);
ω = mΩp is the perturbation frequency, Ωp is the pattern speed.
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2.1 Qualitative Considerations

In the case when Φ1 varies quickly with radius (it is proved below by numerical
calculations), one can neglect all but one term in (1) with the highest derivative
of Φ1. Thus, formula (1) turns to

σ̃ � −εΦ′′
1 .

It is also implied here that the contributions from the resonance terms is of no
significance. As it is clear from (2), ε(r) < 0 in the region between the inner
and outer Lindblad resonances, at which Ωp = Ω − κ/m and Ωp = Ω + κ/m,
respectively. As a rule, the spiral structure is localized within this region (see,
e.g. [6]). Then we obtain the qualitative formula for the response in the form:

σ̃ ∝ Φ′′
1 . (3)

To use the formula (3) one need to know the potential of the primary spirals.
In the general case, this potential should be calculated numerically. However,
the behavior of the potential can be predicted from qualitative considerations
in two regions: in the spiral region and in the region sufficiently far from the
spirals.

1. Spiral Region. For tightly-wound spirals, the curves of minima of the
potential coincide with the curves of maxima of the surface density of the primary
spirals. It follows from the well-known relation between the potential Φ1 and the
surface density σ1 in Toomre’s theory of the tightly-wound spirals [7]:

Φ1(r) = − 2πG

|k(r)|σ1(r),

where k(r) is the wavenumber, G is the gravitational constant. The same corre-
spondence approximately holds for open spirals, as it is demonstrated below on
the model examples (see also [8]).

Applying the formula (3) for such a spiral-like potential Φ1(r) ∝ e−iFΦ (here
the phase FΦ =

∫ r
k(r′)dr′), one can obtain

σ̃(r) ∝ Φ′′
1(r) � −k2Φ1(r), (4)

i.e. in this region, the curves of maxima of the density response follow the curves
of minima of the gravitational potential (see Fig. 2).

2. Region Beyond the Primary Spirals. Well away from the spirals, the
potential Φ1 tends to its asymptotic quadrupole form [9]

Φ1(r, ϕ) → −r−3 cos 2(ϕ − ϕ0), r → ∞, ϕ0 = const. (5)

Applying the formula (3) to the quadrupole potential (5) one can obtain:

σ̃(r) ∝ Φ′′
1(r) � +12Φ1(r), (6)

i.e. the curves of maxima of the response follow the curves of maxima of the
gravitational potential (see Fig. 2).
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Fig. 2. Spiral, multipole, and transitional behavior of the gravitational potential.

It is notable, that the curves of the potential minima take its asymptotic
direction ϕ = ϕ0 just after departing from the primary spirals near its ends.
It follows from numerical calculations of the potential. This implies that the
effective region, that determines the asymptotic direction of the curves of the
potential minima is small, compared to the size of the primary spirals (see [10] for
some qualitative explanations based on the multipole expansion of the potential).
Thus, the potential can be presented in the multipole form

Φ1(r, ϕ) = AΦ(r) cos 2(ϕ − ϕ0) � −rn cos 2(ϕ − ϕ0)

not only at sufficiently large radii, but almost up to the primary spirals. Evi-
dently, the mentioned correspondence between maxima of the response and the
potential holds in the whole multipole region.

In the narrow transitional region between the spiral and the multipole regions
(see Fig. 2) the response switches between minima and maxima of the potentials.
The pitch angle of the spiral response is small due to the narrowness of the
transitional region, and the angular length is apparently about π/2. Thus, the
response in the transitional region is QTS.

QTS cannot contain any significant amount of old stars of the disk, since it
contradicts to the observed small pitch angles of QTS. Indeed, QTS occur in
the gas and young stars. The velocity dispersion of young stars increases with
time and stars should simply leave the QTS region, otherwise the latter would
be much wider.

2.2 Model Examples

In this section, several model examples will be considered. Figure 3 presents the
response to the logarithmic spirals σ1 ∝ eiB log r derived numerically using the
exact formula (1) and the general expression for the simple layer potential.

The parameter B defines the pitch angle i of a spiral: tan i = 2/B. In the first
two figures, the primary spirals are open, while the last figure shows a tightly
wound primary spiral. The responses in the figures follow the maxima of the
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Fig. 3. The response of the galactic disk to the gravitational potential of the logarith-
mic spirals σ1 ∝ eiB log r. The spiral, multipole, and transitional regions are divided by
the circles. Solid lines show the maxima of the primary spirals, dotted lines — minima
of the gravitational potential, dashed lines — maxima of the second derivative of the
gravitational potential, triangles — maxima of the response, calculated using (1).

second derivatives of the potential in accordance with the elementary theory.
For open primary spirals, the QTS are evident. On the contrary, for the tightly
wound primary spirals, it is more difficult to reveal QTS.

The pitch angle of the QTS seems to be roughly independent of the pitch
angle of the primary spirals. For all these cases the pitch angles are about 10◦.

3 Example of QTS in the Galaxy NGC 3631

NGC 3631 is rather bright non-barred galaxy of type Sc with well-defined spiral
structure, observed nearly face-on.

As it was shown in [11], the second Fourier harmonic dominates over the
others for this galaxy. It can be seen from Fig. 4a, where the contribution of the
individual Fourier harmonics to the brightness deviation from axial symmetry is
presented. Figure 4b shows the maximum of the R-map second Fourier harmonic
superimposed on the image of the galaxy. The quarter turn spirals are clearly
seen (this is also true for other bands — B, V, R, Hα). In the Fig. 4b the inner
QTS are clearly seen. They arise just from the same mechanism as the outer
QTS due to the decreasing of the primary spiral amplitude to the center of the
disk.

The axisymmetric disk density profile and the primary spiral density can be
inferred from the analysis of a brightness map, assuming the light to mass ratio to
be constant. The obtained amplitude and phase of the second Fourier harmonic
is given in Fig. 5. Thick curves show the smoothed functions that describe the
primary spiral. The potential is restored by using the general formula of a simple
layer. The rotation curve and the pattern velocity of the spiral structure is taken
from [11], [12].

Figure 6 shows the response to the gravitational potential of the primary
spirals for the grand design galaxy NGC 3631. It is seen that the response re-
peats the curves of the second derivative of the potential. The comparison of the
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a) b)

Fig. 4. a) Contributions of the individual Fourier harmonics to the brightness deviation
from axial symmetry; b) maxima of the m = 2 Fourier harmonic superimposed on the
R-map of the galaxy (ING archive). Circles divide the regions of inner QTS (I), spiral
(II), and outer QTS (III).

Fig. 5. The amplitude (in the arbitrary units) and phase (radians) of the m = 2
Fourier harmonic of the R-band image of the galaxy NGC 3631. Thick curves show the
amplitude and phase of the primary spirals used in calculations.

response with the second Fourier harmonic (solid line) demonstrates the qual-
itative agreement of theory with observations. In the outer part, the response
is somewhat longer, but the pattern structure of the QTS is reproduced. In the
center, the response practically coincide with the Fourier harmonic: the length,
the pitch angle and even the radially aligned structure in the very center is
reproduced. Thus for the inner part, the good agreement is observed.
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Fig. 6. The response of the grand design galaxy NGC 3631. Circles divide inner QTS,
spiral, and outer QTS regions. Dotted lines show minima of the gravitational potential,
dashed lines — maxima of the second derivative of the gravitational potential, triangles
— maxima of the response. Solid lines show maxima of the m = 2 Fourier harmonics
as in the Fig. 4b.

4 Conclusions

1. The phenomenon of QTS at the end of the primary arms of normal grand
design galaxies has been analyzed. It is shown that:

• QTS are the universal nonresonance response of the galactic disk to the
potential of the primary spirals;

• characteristic observed features of the QTS are explained by the peculiarities
of the potential behavior near the end of the primary spirals.

2. QTS occurs not only in normal spiral galaxies. The example of the barred
galaxy NGC 1365 is given in [10], [13]. When the bar is formed, the primary
spiral must appear as the disk response to the potential of the bar. For the
resonance excitation [15], the length of this spiral does not exceed π/2 for the
standard fast bar, and π, for the Lynden-Bell slow bar [14], [15]. If the primary
spiral is strong enough to change the multipole potential of the bar to the spiral-
type potential, then the first quarter-turn spirals should form that elongate the
primary spirals over π/2.

3. QTS provides a natural explanation for the sequential elongation of spirals
both in normal and barred galaxies. The development of the QTS can make
sufficiently powerful so that the total potential will turn into the spiral form
once again. The secondary quarter-turn spirals will then appear, and the spiral
structure elongates further over π/2.
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Dynamics of Galaxies:
From Observations to Distribution Functions

Herwig Dejonghe and Veronique De Bruyne

Astronomical Observatory, Ghent University, Krijgslaan 281, S9, 9000 Gent, Belgium

Abstract. An overview is given of the currently most used dynamical modelling meth-
ods, with an emphasis on those methods that allow to derive a distribution function
from observations of elliptical galaxies. Special attention is paid to the applications of
distribution functions in the study of the internal dynamical structure of galaxies. It is
indicated how existing modelling methods can be improved to correspond better with
state-of-the-art observations and computation facilities.

1 Introduction

In general terms, a dynamical model for a stellar system provides a statisti-
cal description of a gravitational system, that is based as much as possible or
practical on dynamical theory. More specifically, the best one can hope for is
the determination of the distribution function (hereafter DF), which provides
the probability to find a star with a given position and a given velocity. Such
a model is supposed to provide a (good) approximation of the observed mor-
phology and kinematics of a galaxy. In many cases, a dynamical model is only a
vehicle to determine global parameters (e.g. total mass) or special characteris-
tics (e.g. the presence of a central black hole). However, if dynamical modelling
also involves the determination and interpretation of a DF, more detailed and
structural information about the galaxy can be obtained. It is the purpose of
this contribution to show that this goal is coming within reach.

2 General Considerations

2.1 Scope

Dynamical modelling always implies a simplification of some sort because in a
realistic situation dynamical theory is virtually absent or impractical to apply.
An obvious way out is the use of N -body simulations, which can righteously
claim a generality and applicability that theory cannot match. Moreover, the
sampling of a DF from an N -body simulation is rather trivial in principle. On
the other hand, our capabilities to interpret huge amounts of data remains rather
limited, though the amount of information one can handle keeps increasing. One
should also keep in mind that (the possibility of) the presence of dark matter,
the nature of which still eludes us, may vitiate many a, otherwise state-of-the-
art, simulation, because it is by no means obvious if and how dark matter can
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be modelled by means of particles. We will not discuss the N -body technique in
this contribution.

Many dynamical analyses restrict themselves to the study of the Jeans equa-
tions, which are integrals of the Liouville equation and thus are differential equa-
tions involving moments of the DF. The Jeans equations therefore provide the
tool to study galaxies as hydrodynamical systems, filled with a “stellar gas”.
However, they do not generally form a closed set of equations, implying that
they generally require a priori assumptions on the anisotropy of the dispersion
tensor. They also cannot account for the fact that stars are on orbits, that link
rather distant regions of the galaxy, by virtue of the fact that the Jeans equa-
tions are local because they are differential equations. As a consequence, more
hydrodynamical models can be made than models based on DFs, not all of them
however with a positive DF. Despite the extensive use that has been made of
the Jeans equations in the past (e.g. [9], [46], [56]), we will not discuss them in
this review.

2.2 Spiral Galaxies

As of now, relatively little has been done to determine DFs in spiral galaxies,
at least compared to elliptical galaxies. There are many reasons for this. To be-
gin with, there is generally a lot of extinction in spiral galaxies, which makes
observations difficult. Spirals also tend to be less massive than ellipticals, and
therefore high spectral resolution is needed to determine the relatively small ve-
locity dispersions. The observational capabilities to accomplish this have only
recently become practical. Moreover, there is the presence of the spiral arms.
While it is well established that these are only perturbations on an otherwise
rather smooth distribution, their presence, together with the rather patchy dust
distribution associated with them, does not directly make the analysis any sim-
pler. Last but not least, because of the spiral structure that must be rotating,
spiral galaxies are not in a photometric dynamical equilibrium, and therefore the
potential must be time dependent. This makes the modelling quite hard (though
not impossible, see e.g. [78], [79]). Therefore, we will also limit our focus to ellip-
tical galaxies. In the end, elliptical galaxies may prove to be equally complicated
as spiral galaxies, but at least, from a photometric point of view, they look rather
relaxed and smooth, and it does not seem therefore to be a gross simplification to
assume that their underlying gravitational potential is time independent. Even
if it is not (and surely it isn’t), it is unlikely to evolve on timescales that are
comparable to the crossing times of an individual orbit in an elliptical galaxy, as
seems to be indicated by the presence of rather standard-looking ellipticals up
to high redshift.

There is a rather extensive literature on the dynamical structure of our
Galaxy. In many respects, it involves all issues that are relevant for spiral galax-
ies (e.g. the study of the central bar, the 3 kpc ring. . .), and many that are more
typical for ellipticals (the structure of bulge and halo). It is clearly not within
the scope of this review to cover all aspects of Galaxy research, and we will
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only mention attempts to determine the orbital structure of populations in our
Galaxy for as far as equilibrium DFs are involved.

2.3 The Gravitational Potential

A dynamical theory implies somehow a model for the gravitational potential
that is supposed to govern the motion of baryonic matter. Unfortunately, little
is known about the exact form of the underlying gravitational potential of an
elliptical galaxy. There are several philosophies for including a potential into the
modelling.

One of the basic assumptions concerns the symmetries in the total mass dis-
tribution (and therefore the gravitational potential) of elliptical galaxies. It must
be that the potential is somehow connected to the luminous matter distribution,
which can be estimated from deprojecting the projected surface brightness. The
luminous matter distribution can be given as a parameterized function (e.g.
Nuker density, or [21], [61], [76]), or as a sum of basis densities (MGE [8],[36]) or
completely numerically. Similarly, the potential can be a parameterized expres-
sion (e.g. power law models [37], [38]) or a sum of basis functions ([17],[57]), or
a purely numerical function.

Triaxial systems provide the most general description for elliptical galaxies.
Due to their complexity they are not widely used to fit observations (but see
[57], [58]), and their characteristics are more often studied on theoretical grounds
(e.g. [28], [51], [60], [74]). We will not discuss this case any further.

Since the symmetries in the potential largely dictate the modelling flexibility
that dynamical theory will allow, the sequel of this review is structured accord-
ingly.

3 Spherical Potentials

In the spherical world view, the simplest models for elliptical galaxies have DFs
that depend only on the energy E and therefore have an isotropic dispersion
tensor. For the construction of this type of models, it suffices to have an expres-
sion for the spherical spatial density (and hence the potential through Poisson’s
equation), and to solve an integral equations (Eddington’s formula). There is a
close connection between such models and spherical isotropic models based on
the Jeans equations. In spite of the fact that the DF is a more fundamental
quantity than the velocity dispersion, this stellar dynamical description of ellip-
tical galaxies, in the spherical and isotropic framework at least, and for as far
as it is a derivative of observational information, has failed to make important
contributions in addition to what has been obtained with the Jeans equations.

Spherical models can be made anisotropic by introducing the modulus L of
the angular momentum in the DF F (E, L). There are many anisotropic models
possible that reproduce the same mass density and velocity dispersion ([25],
[26]). While the anisotropic generalization is fairly obvious from a mathematical
point of view, it is quite unclear why a stellar system would form and settle in
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a form that is completely blind for the orientation of the orbital planes of its
orbits (orbits in spherical potentials are planar). Nevertheless, such models learn
us that there is a rather bewildering variety of dynamical models that could fit
the photometry in a spherical geometry, though the observed velocity dispersion
could be quite different. It remains a mystery why nature chooses to realize only
a subset of them, so as to make the fundamental plane thin.

Finally, the presence of dark matter offers the possibility to consider non-
spherical models within spherical potentials, the idea being that any inconsis-
tency will be taken care of by the dark matter. It is clearly hard to defend this
assumption in any rigorous way, but it is certainly not improbable that the dark
matter is rounder than the luminous matter. Such models could therefore be
seen as a useful approximation of the real thing [20], [58].¡

4 Axisymmetric Potentials

4.1 Two-Integral Dynamical Models

In the axisymmetric paradigm, the component of the angular momentum paral-
lel to the symmetry axis Lz is in general the only conserved integral besides the
energy. Two-integral models with a DF of the form F (E, Lz) have equal radial
and vertical velocity dispersion, but these are different from the tangential dis-
persion. Such DFs consist of an even part in Lz and and odd part in Lz. The
spatial density does only depend on the even part of the DF. As a consequence, if
a DF generates a system with given spatial density, an unlimited number of DFs
can be constructed that generate that spatial density by adding odd functions
in Lz to the DF. The odd part of the DF is important for the rotation in the
galaxy.

The analytical theory concerning the determination of the DF from the mass
density and the mean rotation has been initiated in [49], [25]. Not many of these
analytical techniques allow to include the observed dynamics in an easy way, and
therefore they have not been applied very often. A contour integral formula for
the calculation of two-integral DFs for axisymmetric systems, derived directly
from the density has been developed by Hunter & Qian [50]. The method requires
an analytical expression for the potential for the density in terms of the potential.
The DF can be calculated as a contour integral. Applications can be found in
e.g. [63], [82].

Kuijken ([54]) developed a completely numerical technique for the construc-
tion of DFs. The numerical inversion of the integral equations connecting the
spatial density and the streaming velocity with the DF, requires some smoothing
which is achieved by a parametrization of the DF in continuous bilinear segments
in this case.

When inhomogeneous data sets containing photometric and kinematic infor-
mations are considered, a quadratic programming algorithm [27] is a practical
tool to obtain a dynamical model. For applications, see [35], [68], [69].

Two-integral DFs can also be constructed using the Richardson-Lucy algo-
rithm ([22]). Furthermore, there are also a number of papers that describe classes
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of analytical models, but that are not really used for modelling data so far ([10],
[11], [12], [52], [65]).

A dynamical system with two integrals of motion does not provide enough
freedom for the modelling of our galaxy: observations have shown that in the
solar neighbourhood the radial and vertical velocity dispersion are clearly dif-
ferent; hence the need for an additional degree of freedom. Moreover, numerical
integration of orbits in axisymmetric systems has revealed that most orbits obey
a third integral.

The introduction of such a third integral into dynamical models makes the
modelling considerable more complicated, mainly because a third integral can
only be determined approximately. There are several ways to approximate a
third integral of motion. Some of these techniques use perturbation methods,
e.g. [23], [44], [59] or derive a so-called ‘partial integral’, e.g. [34], [39]. Another
option is the use of Stäckel potentials, where the expression for a third integral is
analytically known. Some commonly used techniques in three-integral dynamical
modelling are mentioned here.

4.2 Three-Integral Dynamical Models

Schwarzschild Methods. Schwarzschild [67] proposed a method that relies on
the numerical calculation of a large library of orbits in a given potential. During
integration, the characteristics of the orbits (e.g. spatial and projected density,
line profiles, velocity moments) are stored on a grid. The weighted orbits are then
combined in order to approximate the observed quantities as good as possible.
The orbits are parameterized by their starting points, that are connected to
integrals of motion. Hence, there is no need for an expression for an effective
third integral.

This method is very general because there are no prerequisites for the ex-
pression for the potential or the DF. On the other hand it is a computationally
demanding method and it is not straightforward to obtain a sufficiently smooth
DF. In most applications the main issue is to reproduce the velocity moments
and line profiles in order to estimate a (central) mass for the galaxy. Applications
of this method can be found in [7], [8], [13], [14], [15], [41], [42], [64], [76], [81].

Whereas the method is independent of a priori assumptions, it does require
a substantial degree of regularization. One way to make this easier is to use
building blocks that are smoother than individual orbits [60]. One step further
is to use two integral DF components whose observables can be calculated as
integrals of the DF without going through the step of orbit integration, but also
here regularization is required in order to derive smooth DFs [80]. Models that
are created in this way give up a great deal of generality of the Schwarzschild
method and are closely related to another widely used type of models, those that
consist of a combination of basis function DFs.

Basis Function DFs. Independently of how the third integral of motion is
approximated, DFs can be created as a sum of basis functions. This technique
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relies on the linearity of the equations and on a minimization algorithm to find
the best fitting DF (e.g. [16], [18], [23], [24], [30], [31], [36], [45], [53], [55], [58],
[59], [66], [71]).

Within this class of dynamical models a range of different types of basis
functions can be used. Depending on the specific applications, the number of
assumptions may be modest. Expansion methods offer the possibility to ob-
tain non-parametric fits. The most important advantage however is that they
can deliver smooth and positive DFs that are explicitly known, thereby offering
possibilities that are hard to retrieve from models that rely on pure numerical
integration of orbits. These properties make this kind of modelling rather ap-
pealing if the goal is to get insight in the internal structure of elliptical galaxies
(e.g. [18]).

The Use of Separable Potentials. Potentials for which the Hamilton-Jacobi
equations are separable in a given orthogonal coordinate system are called sep-
arable Stäckel potentials. For this family of potentials, three integrals of motion
are explicitly known for all initial conditions, and the expressions for them are
analytical and simple. Moreover, the orbital families in Stäckel potentials are
easily classifiable and correspond to orbits that are found in more general poten-
tials. In many cases they provide a good general description of elliptical galaxies.
Despite the fact that these are not the most general potentials, studying models
based on them may provide valuable insight in the internal structure of elliptical
galaxies ([32], [29], [30]). However, there are no irregular orbits in these poten-
tials [33]. The explicit knowledge of a third integral of motion allows to write
down the moments of judiciously chosen DFs in an analytical way. This is very
practical in combination with the use of basis function DFs (e.g. [18], [30], [36],
[62], [71]).

5 What Can We Learn from Distribution Functions?

In most of the cases where three-integral DFs are explicitly shown (e.g. [8],
[30], [59], [81]) this is done to illustrate that there is indeed structure in the
third integral and to draw conclusions concerning the degree of anisotropy of
the stellar system. However, not all of the presented DFs are smooth enough to
get more detailed information on the internal dynamical structure of the galaxy.

Figure 1 gives an illustration of how information in a three-integral DF can
be visualized, in this case by means of intersections with a plane of constant third
integral in integral space or in turning point space. A representation in turning
point space seems to be the most intuitive, since it can be most easily linked to
physical orbits and their spatial extent. However, when a modelling procedure
is adopted that makes explicitly use of the integrals of motion, a representation
in integral space gives more insight in how the model has used the freedom
available in the basis DFs. Both representations are complementary, in the sense
that radial orbits are highlighted in a representation in the (E, Lz)-plane, while
a representation in turning point space gives a clearer view on circular orbits.
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Fig. 1. An example of visualization of (normalized) DFs. Upper panel: representation
in integral space of an intersection of a three-integral DF with a plane of constant third
integral (I3 = 0). Lower panel: representation of the same quantity in turning point
space. Here, R+ is the apocentre in the equatorial plane, R− is the pericentre in the
equatorial plane, the sign of R− is equal to the sign of Lz.

5.1 Disentangle Photometric and Kinematic Information

Since a dynamical model is based on a mix of photometric and kinematic ob-
servables, the resulting DF carries information on both. When dynamical models
are calculated for elliptical galaxies that behave kinematically different, the DFs
should also be significantly different. When these galaxies have different pho-
tometric properties, a key question is whether there are significant differences
between the DFs that can be attributed to the kinematic information alone. To
answer such a question, it is necessary to eliminate from the DFs the signature
of the photometry.



250 Herwig Dejonghe and Veronique De Bruyne

Such a normalization can be realized by dividing the three-integral DF, ob-
tained by fitting the photometry and kinematics, by the even two-integral DF
that is determined completely by fitting the photometry only. In addition, such
a normalized DF is dimensionless and coordinate independent, which makes it
a suitable quantity for comparison between different dynamical models.

Figure 1 shows a logarithmic representation of such a normalized three-
integral DF for NGC 4649. A detailed description of the modelling and the
observations can be found in [18]. The main conclusion from the figure is that
orbits with small |Lz| seem to play an important role in this model (largest val-
ues for the contours in a vertically stretched region in the middle of the contour
plot), and this is an effect attributable to the kinematical information only. In
the representation in turning point space, a small region with positive contours
for circular or near-circular orbits with negative Lz becomes clear, although
the observed mean velocity is positive. This shows that small amounts of coun-
terrotation in elliptical galaxies may not leave their imprint on the observed
kinematics.

5.2 Additional Classification Parameter

The class of elliptical galaxies is generally seen as a twodimensional manifold,
characterized by flattening and boxyness/diskyness, which are photometric pa-
rameters. One may think of refining the classification by using kinematic infor-
mation. This could be done by means of comparing normalized DFs as described
in the previous part. In order to quantify this idea, a diagnostic could be used:

ν =
log(M1) − log(M2)

2
√

σ2
M1

+ σ2
M1

, (1)

with log(Mi) the logarithm of the normalized DF for model i and σMi
the error

on the normalized DF for model i.
An illustration of what can be concluded from this diagnostic can be found in

Fig. 2, where a comparison between normalized DFs of NGC 4649 and NGC 7097
indicates that it is indeed possible to distinguish between galaxies based on their
kinematics alone. The figure shows that the orbital density of radial orbits and
circular orbits is significantly high for NGC 4649, while orbits with moderate to
high |Lz| are preferred in the model for NGC 7097. These differences in orbital
densities are due only to differences in kinematic parameters.

5.3 Counterrotation in NGC 7097

NGC 7097 is a disky elliptical where the mean velocity in the inner 1.76 kpc
indicates a counterrotating core (lowest 〈v〉 is -20 km/s at 0.88 kpc). This galaxy
was modeled with a three-integral model based on a Stäckel potential [18].

A representation in turning point space of the DF where the number of orbits
with Lz < 0 is subtracted from the number of orbits with Lz > 0 (see left panel
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Fig. 2. Comparison of normalized DFs in a plane with zero third integral, by means
of the diagnostic ν, as defined in equation 1. This figure compares DFs for NGC 4649
and NGC 7097. Negative contours are in dashed lines and indicate that (DFNGC 7097 >
DFNGC 4649), positive contours are in dotted lines and indicate that (DFNGC 4649 >
DFNGC 7097). Solid lines display contours for -1,0,1.

in Fig. 3) revealed that the counterrotation in this galaxy is not necessarily
caused by a compact group of stars. Stars contributing to the counterrotation
can be found as far as 4 kpc from the centre, while the mean velocity profile
shows only counterrotation up to 1.76 kpc. For a toy galaxy where the amount
of rotation and counterrotation is doubled with respect to the counterrotation
present in NGC 7097, the counterrotating orbits are confined to a much smaller
spatial region (right panel in Fig. 3). This indicates that the amount of signal
in the 〈v〉-profile for NGC 7097 is not enough to constrain the counterrotating
stars to the central part of the galaxy. This has also implications for possible
formation scenarios for ellipticals with counterrotating cores.

6 Continuous Improving on Modelling Techniques

Dynamical modelling is a vivid research field, where considerable efforts are
spent on improving existing modelling methods. These continuous developments
are triggered by practical considerations such as ever improving computational
capabilities and/or observational facilities, that deliver data of ever increasing
quality and quantity.

6.1 Spectra as Source of Information

The shape of the absorption lines in a galaxy spectrum depends on the composi-
tion of the stellar mix and the dynamics of the galaxy. The most frequently used
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Fig. 3. Counterrotation in NGC 7097. Normalized DFs in turning points space, where
the number of orbits with negative angular momentum is subtracted from the number
of orbits with positive angular momentum. For NGC 7097 in the left panel: this galaxy
contains counterrotating orbits with radii up to 4 kpc. The right panel shows the case
for a toy galaxy, where the amount of rotations was doubled with respect to the case
of NGC 7097.

approach to dynamical modelling is a two-step process: first the line-of-sight ve-
locity distribution (hereafter LOSVD) is determined from the observations and
kinematic parameters are derived. In a second step these parameters are used to
constrain a DF.

A new strategy uses the spectra as they come to constrain (1) a DF and (2) a
template mix in one modelling process [31]. This is equivalent to the construction
of a detailed dynamical model and a population synthesis at the same time.
However, fitting directly to spectra implies a considerable increase in the number
of data points. It seems that only when analytically tractable basis functions
are used to construct the DF, in which case the contribution of the dynamical
components to the spectra can be calculated analytically, this is a feasible setup.

With this method, a three-integral dynamical model has been constructed
for NGC 3258 [20]. Spectral features from the Ca II triplet were modeled using
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Fig. 4. Dynamical model for NGC 3258 fitted directly to spectral features from the
Ca II triplet (data points with error bars) and the fit (in solid lines). The fit regions
are located between the intervals indicated by dashed lines with centre around 8620 Å
and 8750 Å. Projected radii are indicated in the top right corners.

two different template stars (a G5 dwarf and a K4 giant). Figure 4 shows the fit
to the two strongest lines of the Ca II triplet at different projected radii.

Figure 5 shows some results of the modelling: the number density of the
different populations (upper panel) and the kinematic parameters (projected and
spatial) for the different populations. The obtained DF can be used to study the
dynamics of the separate stellar populations in the galaxy. This can be done by
comparing their spatial kinematics (see Fig. 5), their LOSVDs (see Fig. 6) or
representations of their DFs (see Fig. 7).

The plot with relative densities in Fig. 5 shows that the centre contains
mainly K4 giants, between 0.5 and 2 kpc there is almost an equal amount of both
stellar types and for larger radii the K4 giants are again dominating the stellar
light distribution. As for the kinematics, it is clear that the G5 dwarfs rotate more
than the K4 giants do (illustrated in Figs. 5 and 6). The anisotropy parameter
shows that the model is isotropic in the centre, becomes radial anisotropic soon
and becomes tangential anisotropic at 2 kpc.

The shapes of the line profiles for the total DF (solid lines in Fig. 6) are
not Gaussian but have a large variety of shapes. These shapes can be better
understood when the LOSVDs for the total DF and the ones for the separate
populations are compared. The LOSVDs for the total DF are composed of the
LOSVDs of the G5 dwarfs (dotted profiles) and the K4 giants (dashed profiles).
The relative heights of these profiles indicate the relative number densities of
the stellar populations.

Intersections for the DFs with the equatorial plane are shown in Fig. 7,
presented in the (E, Lz)-plane and in turning point space. Also here, the char-
acteristics of the total DF (upper row) are a mix of the characteristics of the
DFs for the separate stellar populations.
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Fig. 5. Dynamical model for NGC 3258. Upper left panel: densities of the stellar pop-
ulations. Middle left panels: projected mean velocity and projected velocity dispersion
for the total DF in solid line and with error bars. The data points presented by dots are
kinematic parameters obtained from fitting a Gauss-Hermite series up to fourth order
to the observed spectra. Lower left panel: The anisotropy parameter for the model.
Upper right panels: Projected kinematics with error bars for the stellar templates (G5
dwarfs on the left, K4 giants on the right), from top to bottom: projected mean ve-
locity, projected velocity dispersion. The data points presented by dots are kinematic
parameters obtained from fitting a Gauss-Hermite series up to fourth order to the ob-
served spectra. Lower right panels: Spatial kinematics with error bars for the stellar
templates (G5 dwarfs on the left, K4 giants on the right), from top to bottom: spatial
dispersions and spatial velocity.

6.2 Construction of a Third Integral

Most dynamical models with DFs currently found in the literature use Stäckel
potentials and the explicit expression for the third integral offered by these sys-
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Fig. 6. LOSVDs and error bars calculated from the dynamical model for NGC 3258,
for the total DF in solid lines, for the G5 dwarfs in dotted lines and for the K4 giants
in dashed lines.

tems. To improve on the generality of this approach, one may think of approx-
imating a galaxy potential by a set of Stäckel potentials instead of one single
Stäckel potential.

This can be done in an elegant way, since creating a grid in energy and angu-
lar momentum in integral space creates a sequence of surfaces in space so that
for fixed angular momentum, orbits with higher energy fill a volume that is com-
pletely embedded in the volume filled by an orbit with lower energy. Similarly,
for fixed energy, orbits with larger angular momentum are completely within
the volume filled by orbits with smaller angular momentum. Hence, dividing
the (E, Lz)-plane into a number of rectangles is equivalent to dividing space
into a number of bounded domains, see Fig. 8. For each of these domains, a
Stäckel potential can be determined that is locally a good approximation to the
original potential. The validity of the approximation can be checked in several
ways, based on numerical integration of orbits in the original potential and fitted
Stäckel potential. Various criteria to judge the agreement between the orbits in
the original potential and local Stäckel potential are surfaces of section, conser-
vation of I3, orbital densities, topology of orbits. An application of this procedure
can be found in [17].

7 Some Concerns Before Modelling Takes of

7.1 Influence of Dust

In the context of dynamical modelling, elliptical galaxies are traditionally con-
sidered as dust free stellar systems, but it is well known that in nature they do
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Fig. 7. Representations in integral space (left) and turning point space (right) of the
DF for NGC 3258 in the equatorial plane. Here, R+ is the apocentre in the equatorial
plane, R− is the pericentre in the equatorial plane, the sign of R− is equal to the sign
of Lz. Contours are equally spaced in log(phase space density). From top to bottom:
for the total DF, for the G5 dwarfs, for the K4 giants.

contain various amounts of dust. Moreover, observed photometry and kinematics
can be seriously effected by the dust.

There are numerous observations that prove the existence of dust in elliptical
galaxies. Discrete optical dust features are seen in a number of ellipticals as dust
lanes ([6], [48]) or in central regions ([40], [72], [77], [73]). Thermal far-infrared
emission has revealed, unexpectedly, large IRAS fluxes and a comparison with
optical dust features indicated that most of the dust has to exist as a diffuse
component ([47]).

The dust grains present in ellipticals can cause absorption and scattering of
the light. The result is that photons disappear from the line of sight and reap-
pear on other lines of sight. The effect of this on the observed photometry and
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Fig. 8. Left: A grid in integral space (a) is a subdivision in space (b). Right: Intersec-
tions of lines of constant energy with the curve for the effective potential (solid line)
illustrate that orbits with higher energy (E1) fill a volume that is completely embedded
in the volume filled by an orbit with lower energy (E2). Similarly, for fixed energy (e.g.
E1), orbits with larger angular momentum (J1)are completely within the volume filled
by orbits with smaller angular momentum (J2).

kinematics can be studied by solving the radiative transfer equation, taking dust
attenuation into account and calculating the light profile and projected kinemat-
ics numerically ([1], [3], [4]). In practice however, a Monte Carlo routine that
generates millions of photons turns out to be most cost-effective and flexible.
It is able to simulate quite naturally the scattering process and it includes ve-
locity information in an elegant way. Moreover, there are no restrictions on the
geometry of stars and dust and a decent error analysis is possible.

This modelling showed that absorption and scattering by dust grains affect
all observables. As for the kinematic profiles, there are no large effects in the
central regions of the galaxy. On the other hand, there are serious effects on
the kinematics in the outer regions: the projected velocity dispersion decreases
more slowly while the h4 profile increases quite dramatically (see Fig. 9). These
effects are identical to what is generally considered as the kinematic signature of
a dark matter halo. Hence, dust attenuation may reduce or even eliminate the
need for a dark matter halo, giving rise to a new mass-dust degeneracy. This
is investigated in more detail in [2]. Possible ways to break this degeneracy is
to include dust attenuation in dynamical modelling and/or to use near-infrared
kinematics which are less influenced by dust attenuation.

7.2 Error Bars on Data

Undoubtly, it is important to have photometry and kinematic data of good qual-
ity, but it is of equal importance to have a reliable error estimate on kinematic
parameters. For dynamical modelling, these estimates are often used in good-
ness of fit indicators, and the decision whether to accept or reject a particular
dynamical model often depends critically on the error bars of the data (e.g. [13],
[64], [53]).
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Fig. 9. Effect of dust attenuation on the projected kinematics, in particular the ve-
locity dispersion and the h4 profiles. The profiles are shown for a model without dust
attenuation and for models with optical depths of V = 0.5 and V = 1.

An observed galaxy spectrum is the sum of individual stellar spectra of stars
moving along the line of sight that have been redshifted by the rotation of
the galaxy and smeared out by the velocity dispersion of the stars. Since the
seventies, much effort has been spent on retrieving the LOSVD from observations
[19]. In this context, it is convenient to express the information in that LOSVD
in a limited number of parameters.

The higher order moments of the LOSVD depend critically on the wings of
the profiles. Instead of expressing the characteristics of a LOSVD through its
moments, a parameterized version of the LOSVD is often used in the form of a
truncated Gauss-Hermite series ([43], [75]).

These parameters and an error estimate on them are often obtained using a
least-squares minimization. The statistical interpretation of this method relies
on the assumption that the noise is independent and Gaussian distributed on the
input data. These conditions are generally not met after standard data reduction
steps. As a consequence, the errors derived from standard statistics will in many
cases differ from the real errors on the kinematic parameters.

Sometimes, Monte Carlo simulations are used ([5], [70]) to estimate the un-
certainties on the derived parameters. For the realization of synthetic galaxy
spectra, a Gaussian noise distribution with given S/N is used. So also this ap-
proach will show a similar tendency to underestimate the errors. People are
aware of this, but it is mostly left unclear how large the differences between the
estimated and real error bars are.

Recently, a method was proposed that makes a diagnosis of the characteristics
of the real noise on the spectra and that allows to calculate more realistic error
bars on kinematic parameters [19]. An illustration is given in Fig. 10. Panel (a)
shows a galaxy spectrum and a fit to this spectrum, panel (b) shows the fitting
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Fig. 10. Illustration of a technique that allows to calculate realistic error estimates.
Panel (a): observed spectrum and fit. Panel (b): fitting LOSVD. Panel (c): residue of
the fit. Panel (d): power spectrum of residue (black) and power spectrum with S/N of
input spectrum (grey).

LOSVD and panel (c) shows the residual of the fit, that is considered as the
real noise involved in the problem. Panel (d) shows the power spectrum of the
residual in black and the power spectrum of a Poisson noise profile according
to the S/N of the spectrum in panel (a) in grey. It is clear that the real noise
involved is not Poissonian. The characteristics of the noise can be represented by
the smoothed representation (dashed line). Realistic error estimates are obtained
from Monte Carlo simulations with synthetic galactic spectra where the noise
distribution has the same power spectrum as the real noise.

In the test case of NGC 3258, the realistic errors appeared to be almost a
factor of 2 larger than the errors based on least squares statistics. Moreover, for
the first time is was shown that the way the spectra are sampled in the data
reduction has a non-negligible influence on the quality of the derived kinematics.

8 Conclusions

In this contribution we have given an overview of the most frequently used
dynamical modelling methods. If detailed and structural information about a
galaxy is to be obtained, the dynamical modelling should involve the determi-
nation of a DF. By means of a number of case studies it is shown how structural
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information contained in DFs can be visualized and interpreted. It is clear that
this requires the DF to be a smooth function. However, not all dynamical mod-
elling methods that are currently used deliver a DF that can be used for this
purpose. If one agrees to use analytical approximations to the third integral (ax-
isymmetric case), an expansion of the DF in analytic basis functions seems to
offer only advantages.

We finally discuss a few recent developments that have become possible
thanks to improved observational and computational capabilities, and we also
critically reexamine some established paradigms. In particular, new astrophysi-
cal issues can be addressed if a direct fit to the spectra can be constructed. There
are now possibilities to perform dynamical modelling and population synthesis
in one go. We also explore what would need to be revised if one of the basic
premises of dynamical modelling of elliptical galaxies is wrong: that there is lit-
tle or no dust in elliptical galaxies. It turns out that the presence of dust has
a non-negligible influence on the observable kinematics, especially in the outer
regions that are crucial in our assessment of the presence of dark matter. Finally,
we revisit the usual error analyses on the kinematic parameters, and show that
in general, error bars of higher order kinematic parameters are underestimated
by almost a factor of 2.
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Dark Matter in Spiral Galaxies

Albert Bosma

Observatoire de Marseille, 2 Place Le Verrier, 13248 Marseille Cedex, France

Abstract. In this talk I will discuss several issues concerning the dark matter problem
in spiral galaxies. I will give first my version of the state of the debate about cuspy
halos in low surface brightness galaxies, and then discuss the situation in bright spirals.
I conclude that the dark matter profiles of low surface brightness late-type galaxies do
not show much evidence for cuspy halos with NFW type profiles, and that the inner
parts of high surface brightness spirals are unlikely to be dominated by dark matter.

1 Introduction

Recent developments in cosmology show a rather coherent picture on large scales,
in favor of a ΛCDM model of structure formation, with ΩΛ about 0.7, and Ωmatter
about 0.3. Since Ωbaryon is about 0.04, there is room for dark matter in the form
of a WIMP, but, with Ωstars about 0.005 at z = 0, there are a lot of baryons
unaccounted for at the present epoch (see e.g. [45] and references therein).

Nevertheless, there is a dark matter “crisis” on small (galaxy) scales, since
numerical simulations of cosmological structure formation seem to predict:
• cuspy halos, in apparent conflict with data on low surface brightness (hereafter

LSB) galaxies and the inner parts of the Milky Way
• a lot of substructure, in apparent conflict with the number and size of the

Milky Way’s companions
• an offset in the Tully-Fisher relation, referred to as the angular momentum

problem.
Since the majority of people working in the field think that the ΛCDM model

of structure formation is the best picture describing the large scale structure,
great care has to be exercised to ascertain the validity of the conclusions on
the galaxy scale, before concluding about the validity of the ΛCDM model. The
reactions to this situation are of several kinds: proponents of the ΛCDM model
question the validity of the observations, others examine the role of additional
physical processes which could remove material in a dark halo cusp while not
questioning the validity of ΛCDM, and yet others examine other theories, such
as warm dark matter, self-interacting dark matter, or even MOND.

In this paper I will examine the two issues concerning dark matter on galactic
scales on which a lot of work has been done recently, i.e. the dark matter profiles
of LSB galaxies, and the question of the dominance of dark matter in the central
parts of bright spirals.
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2 No Cuspy Halos in LSB Galaxies

2.1 Expectations vs. Observations

Dwarf and low surface brightness galaxies are thought to be dark matter dom-
inated, and thus provide a crucial test for the current cosmological numerical
simulations, which are predicting the density profiles of dark matter halos. Inner
power law slopes for dark halos produced in cosmological simulations of CDM
and ΛCDM models come out to be -1.5 ([33], [17]) or -1.0 (Navarro et al. 1996
[35], hereafter NFW). The latter argue that their NFW profile is universal, and
thus can be scaled down to the dwarf galaxy scale (even though these scales
are not yet fully modelled directly up till now). For warm dark matter models,
similar slopes are found (e.g. [22]).

If one neglects the minor contribution of the stellar and gaseous components
in these galaxies, an upper limit can be found for the slope of the density profile
of the dark halo directly from inverting the observed rotation curves into a
density distribution. It is crucial to get rotation data at the highest spatial
resolution possible, but some claims in the literature have been made based not
on real data, but on HI rotation curves corrected for beam smearing. Since a
clear measurement is better than several arguments, we have collected a large
data set using long slit Hα-spectra, and find that we can exclude the cuspy
halos predicted by the current cosmological numerical simulations ([13], [14],
[32], [11]). In the last paper, we concentrated on nearby dwarf galaxies, so as
to have the highest linear resolution possible. Our results clearly show that the
high resolution data favour models with a core, and exclude the steeper slopes
required by the NFW and other CDM models.

2.2 Reply to Some Criticism

Primack ([39], [40]) severely criticises our work as published in De Blok et al. [13].
Like e.g. Van den Bosch & Swaters [46], he orients the discussion towards asking
whether the data are still consistent with NFW profiles, rather than towards
trying to find which power law slope fits the data best. In any case, he prunes
the data, and eliminates galaxies which have data at poor resolution, edge-on
galaxies, etc., so as to retain only a restricted sample. While I disagree with his
statistics in the end, I will follow here Primack’s arguments, select from our data
the galaxies which are well resolved according to his criteria, and see whether
his conclusions are justified.

a) resolution. Though in [13] and [11] we do discuss the effects of resolution,
let me consider only galaxies with two independent points inside 1 kpc, the
radius at which the discrimination with the NFW model prediction becomes
significant. This strict criterion allows me to retain 16 galaxies from the original
sample discussed in [13].

b) edge-on galaxies. Contrary to Primack’s assertions, there is nothing mys-
terious about their kinematics. In [8] we show that small edge-on galaxies like
NGC 100 are transparent, a conclusion confirmed e.g. by [31]. Moreover, our
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Fig. 1. Left: Plots of the slopes for the 16 best resolved galaxies of the De Blok et
al. [13] sample (open circles) and the additional 12 galaxies in the De Blok & Bosma
[11] sample (filled circles), with 3 σ error bars. 17 galaxies are 3 σ away from the NFW
prediction. Right: Value of the inner slope α of the mass-density profiles plotted against
the radius of the innermost point on the rotation curve in kpc, for a number of dwarf
and low surface brightness galaxies observed by De Blok et al. Open circles and squares
are from the sample in [13], stars and filled circles are from the sample in [11]. Over-
plotted are the theoretical slopes of a pseudo-isothermal halo model (dotted lines) with
core radii of 0.5 (left-most), 1 (centre) and 2 (right-most) kpc. The full line represents
a NFW model, the dashed line a CDM r−1.5 model. Both of the latter models have
parameters c = 8 and V200 = 100 km s−1, which were chosen to approximately fit the
data points in the lower part of the diagram.

spectra do not show low radial velocity wings expected for a non solid body
rotation in the central parts, which by itself rules out NFW profiles for these
edge-on galaxies. So I retain the 5 edge-on galaxies in the final sample, but note
that my conclusions do not depend on their inclusion.

c) more data. I add new data from the February 2001 run of [11]. Primack
[39] did not dispose of these data, but in [40] chose to ignore them. This brings
the total number of galaxies in the sample considered here to 28 galaxies.

With these new selection criteria, I rule out NFW slopes at the 3σ-level for
17 galaxies, of which 5 edge-on (see Fig. 1). Primack’s statement that of the
dozen cases probed in [13], about half appear consistent with the cuspy NFW
profile is simply not true (I find only 2 out of 12 galaxies he selected having
slopes ≤ -0.5), and his final conclusion that this data set may be consistent with
an inner density profile α ∼ -1 but probably not steeper, is not warranted, and
not corroborated by the newer data.

2.3 Further Observations and Modelling OF Possible Errors

In [11] we already show that data taken by independent observers agree for F561-
1, F563-1, F568-3, and UGC 5750. Our results have been corroborated by an
independent study by Marchesini et al. [28, 29], who did a further comparison
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of raw data for 4 other galaxies. Fabry-Perot data from [18] for a few galaxies
in common are also in good agreement.

During a February 2002 observing run, I checked again several galaxies pre-
viously observed by others, and find good agreement between the raw data.
Moreover, I experimented for UGC 4325 with deliberate slit offsets of ± 5”, and
find very good agreement between the position-velocity curves thus obtained.
Such agreement is expected for velocity fields dominated by solid-body rotation.
These observations are reported in [12].

Furthermore, to counter objections that systematic errors play a significant
role in our results, and always bias the result away from cusps, and in favour of
cores, we have simulated the observational analysis using Monte Carlo simula-
tions (cf. [12]. Part of the scatter in the slope α could come from the fact that
the “no disk” solution is not strictly true, but this gives a lower limit on α. Part
of the scatter could come from lopsidedness, part could come from streaming
motions, and part from slit offsets, and/or mismatches between the optical and
the dynamical centers.

In all these cases, it seems very difficult to erase a peak in the distribution
around slope -1 expected if the NFW profile is really valid in LSB galaxies.
Only extreme values of the possible biasing effects have to be postulated, i.e. slit
offsets of 5” or more in all cases, etc. On the other hand, the good resolution
data favour a slope of -0.2, with a scatter of 0.2 which can naturally be explained
by a modest amount of every effect considered.

3 Spirals

As already remarked by Kalnajs [19], there is not much need for a dark halo in
order to explain optical rotation curves of bright spiral galaxies. This has been
corroborated for many more optical rotation curves by Kent [20, 21], Athanas-
soula et al. [2], Buchhorn [9] as reported in Freeman [15], Moriondo et al. [34],
and Palunas & Williams [37]. It is thus the extended HI rotation curves which
provide the strongest evidence for the need of a dark halo. However, there is
no simple way to determine how important the disk is in the central parts, and
whether it dominates the potential there. Even so, models based on cosmological
simulations (e.g. [36]) predict that the inner parts of spirals are also dark matter
dominated. Hence the importance to study spiral galaxies in such a way so as
to discriminate between maximum disk or sub-maximum disks.

3.1 Importance of Good Data in the Inner Parts

As for the LSB galaxies discussed before, it is very important to get good rota-
tion curve data in the inner parts, so that the decomposition into a mass model
with disk (and bulge sometimes), gas and dark halo components can be done
correctly. This means in practice that the HI data for the outer parts need to be
supplemented with data in the inner parts, if the spatial resolution of the data at
21-cm is inadequate. In the latter case, beam smearing will lower systematically
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the derived rotation curve. This problem, while thoroughly understood in princi-
ple, is still playing an unnecessary large role in the discussion. Partly this is due
to the unfortunate circumstance that for late type spirals the differences between
the Hα and HI rotation curves are not very large, and sometimes so small within
the admittedly large errors of both datasets, that some people are misled into
assuming that they can be ignored. This is sometimes justified a posteriori by
taking a high resolution Hα spectrum along the major axis, which agrees with
the HI rotation curve in some cases, but not in others. Systematic programs are
now underway to remedy this situation, using several techniques: long slit spec-
troscopy of emission lines such as Hα (e.g. [13]), 3D imaging using Fabry-Pérot
techniques (e.g. [10, 5]), or CO data from e.g. the BIMA interferometer [50].

3.2 Importance of Disk Self-gravity

For brighter spirals, the problem of decomposition into mass components and
the degeneracy of this procedure becomes crucial. I have discussed this problem
several times elsewhere, e.g. [6]. There are several arguments pleading for the disk
mass being dominant in the central parts of spiral galaxies, i.e. the constraints
posed by spiral structure theory, the constraints imposed by fitting systematic
peculiar velocities due to motions induced by spiral arms, and the amplitude of
the radial velocity jumps across shocks in barred spirals.

Swing Amplifier Criteria: Athanassoula et al. [2] have discussed the ap-
plication of spiral structure constraints to composite mass models. For each
model they examine if swing amplification, based on the mechanism discussed
by Toomre [43], is possible. A more graphical description is given in [7]. The
physics of the swing amplifier depend on the shape of the rotation curve and on
a characteristic X parameter, which in turn depends on the epicyclic frequency
κ, the number of arms m, and the active surface mass density of the disk.

By requiring that the swing amplification of the m = 2 perturbations is pos-
sible, one can thus limit the range of mass-to-light ratios to a factor of 2: the
lower limit is set by requiring that the disk is massive enough so that ampli-
fication of the m = 2 perturbations is just allowed, and the upper limit is set
by requiring that amplification of the m = 1 perturbations is just prohibited.
Usually the latter condition is fulfilled if one requires a model with maximum
disk and a halo with non-hollow core. See [2] for more details.

Non Circular Motions in Spiral Galaxies: Already in the M81 HI data ob-
tained with the Westerbork telescope ([41]) the effects of peculiar motions due to
the spiral arms are clearly seen. These were modeled with a response calculation
by Visser [47], who did not include a dark halo in his models. Lately, Alfaro
et al. [1] show a single long-slit spectrum of the galaxy NGC 5427, where the
presence of “wiggles” in the position-velocity curve are quite clearly associated
with the spiral arms. This is not new, of course, since wiggles were already seen
in long slit data of quite a number of galaxies (e.g. [42, 30]), and taken to imply
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maximum disk (e.g. [15]). It is clear that the presence of such wiggles indicates
that the disk is self-gravitating enough to produce them.

Kranz et al. [23] present long-slit data for NGC 4254, a spiral galaxy in the
Virgo cluster for which also HI data are available [38]. They try to reproduce
the observed velocity perturbations with a stationary gas flow model using the
K-band image of the galaxy as input to the evaluation of the disk part of the
galactic potential. They find that a maximum disk model produces too large
velocity perturbations, and put an upper limit on the disk mass fraction (the
mass ratio between a given disk model and the maximum disk model) of 0.8.
However, this galaxy is lopsided in the HI, the spiral may be evolving, the small
bar in the center of the galaxy might have a different pattern speed than the
main spiral pattern, and the inclination may be higher than the authors take it.

In his thesis, Kranz ([24, also 25], reports on a similar analysis for four more
cases, and finds a trend that the brightest spirals (those with the highest rota-
tional velocities), seem to have maximum disks, but that towards lower luminos-
ity spirals the relative influence of the dark matter in the inner parts increases.
A comparison with the data from Athanassoula et al. [2] shows in fact good
agreement with this trend.

Non Circular Motions in Barred Spirals: Weiner et al. [48, 49] model in
detail the gas flow in the barred spiral NGC 4123, and find that the best fit to
the velocity data requires a maximum disk model for the mass distribution. Note
that here again the modelling is done as a response calculation for a stationary
flow in the potential derived from an optical image. As in the case of NGC 4254,
no time evolution has been considered.

Lindblad, Lindblad & Athanassoula [26] have analyzed similar data for the
bright barred spiral NGC 1365, and find a relatively good fit with a maximum
disk model. Since the rotation curve of NGC 1365 is declining, no dark halo has
been included in these models.

3.3 Lensing Data

Gravitational lensing is a promising tool for the derivation of mass distributions,
since there are no assumptions to make about the messy stellar population con-
tents of the object which does the lensing. Maller et al. [27] discuss the possibility
to determine in the case of strong lensing the flattening of the gravitational po-
tential from eventual misalignments of the lensed images and the object doing
the lensing. Trott & Webster [44] discuss the case of the lens 2237+0305, for
which they combine the lens model with data on the outer rotation curve from
VLA HI observations. From their models there is clear evidence for little mass
due to the dark halo in the central parts, which are dominated by a bulge-bar
system (also [51]). Their interpretation that the disk is not maximal is partly
influenced by their inclusion of the bar into the bulge, even though bars are
thought to originate in the disk.

For our own Galaxy data on the microlensing towards the bulge-bar system
has been used to estimate whether there could be a NFW-like dark matter cusp
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in the central parts ([3, 4]). Since the lensing data has to be explained by the stars
in the bar-bulge system, one can calculate how much the dark matter contributes
to the inner rotation curve of the Galaxy, while keeping the constraints set by the
situation in the solar neighbourhood. The models for the stellar distribution of
the lensing sources slightly underpredict the lensing rate, so that there is hardly
any room for dark matter in the central parts of our Galaxy.

4 Conclusion

In conclusion, our results show that the predicted steep slopes in the density
profiles of LSB galaxies are not observed. The evidence for brighter spirals is
that also there dark matter may not be dominant in the central parts of galaxies.
This means that the current description by cosmological numerical models is
incomplete at small scales, if not incorrect.
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4 Institut de Physique Nucléaire de Lyon, Villeurbanne, France
5 Physics Department, University of Oxford, Oxford, UK
6 European Southern Observatory, Garching, Germany
7 Gemini Observatory, La Serena, Chile
8 Department of Physics and Astronomy, University of Nottingham, Nottingham, UK

Abstract. We have measured the two-dimensional kinematics and line-strength dis-
tributions of 72 representative nearby early-type galaxies, out to approximately one
effective radius, with our panoramic integral-field spectrograph SAURON. The resulting
maps reveal a rich variety in kinematical structures and linestrength distributions, in-
dicating that early-type galaxies are more complex systems than often assumed. We are
building detailed dynamical models for these galaxies, to derive their intrinsic shape
and dynamical structure, and to determine the mass of the supermassive central black
hole. Here we focus on two examples, the compact elliptical M32 and the E3 galaxy
NGC4365. These objects represent two extreme cases: M32 has very regular kinemat-
ics which can be represented accurately by an axisymmetric model in which all stars
rotate around the short axis, while NGC4365 is a triaxial galaxy with a prominent kine-
matically decoupled core, with an inner core that rotates about an axis that is nearly
perpendicular to the rotation axis of the main body of the galaxy. Our dynamical mod-
els for these objects demonstrate that two-dimensional observations are essential for
deriving the intrinsic orbital structure and dark matter content of galaxies.

1 The SAURON Project

The formation and evolution of galaxies is one of the most fundamental research
topics in astrophysics. A key question in this field is whether early-type galaxies
form very early in the history of the universe or are gradually built up by mergers
and the infall of smaller objects. The answer to this problem is closely tied
to the distribution of intrinsic shapes, the internal dynamics and linestrength
distributions, and the demography of supermassive central black holes.

In the few past decades, it has become clear that ellipticals, lenticulars, and
spiral bulges display a variety of velocity fields and linestrength distributions.
Two-dimensional spectroscopy of stars and gas is essential when attempting to
derive information on the intrinsic structure. For this reason, we have built a
panoramic integral-field spectrograph, SAURON ([1]), which provides large-scale
two-dimensional kinematic and linestrength maps in a single observation.

G. Contopoulos and N. Voglis (Eds.): LNP 626, pp. 279–285, 2003.
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We commissioned SAURON on the 4.2m William Herschel Telescope on La
Palma in 1999. In low-resolution mode, the spectrograph combines a large field-
of-view (33′′×41′′) with a pixel size of 0.′′94. When the seeing conditions are good,
the high-resolution mode, with a pixel size of 0.′′28, allows zooming in on galactic
nuclei. SAURON observes in the spectral range of 4810–5340 Å, which contains
the gaseous emission lines Hβ and [OIII] and [NI], as well as a number of stellar
absorption features (Mgb, Fe, Hβ). The instrumental dispersion is ∼100 km/s.
Between 1999 and 2002, we have used SAURON to observe a carefully-selected
representative sample of 72 ellipticals, lenticulars and Sa bulges, distributed
over a range of magnitudes, ellipticities, morphologies and environments ([29]).

We have finalized the data reduction, have accurately separated the emission-
and absorption lines, have calibrated the line-strength measurements, and have
in hand maps of the stellar and gaseous kinematics and linestrengths for all 48
E and S0 objects, with those for the spirals to follow soon. The maps reveal
many examples of minor axis rotation, decoupled cores, central stellar disks,
non-axisymmetric and counter-rotating gaseous disks, and unusual line-strength
distributions ([2, 29]). We have also developed new methods to spatially bin the
data cubes to a given signal-to-noise ([4]), and to quantify the maps with Fourier
methods ([5, 17]). This allows accurate measurements of, e.g., the opening angle
of the isovelocity contours and of the angle between the direction of the zero-
velocity contour and the minor axis of the surface brightness distribution ([5]),
enabling various statistical investigations of the entire sample of objects.

2 Dynamical Models

We are constructing detailed dynamical models which fit all kinematics and
eventually even observations of the stellar line-strengths of the galaxies in the
SAURON survey. We do this by means of Schwarzschild’s ([18]) orbit superpo-
sition method, which was originally developed to reproduce theoretical density
distributions (e.g., [12, 14, 18–20]), and was subsequently adapted to incorporate
observed kinematic data in spherical and axisymmetric geometry ([6, 9, 11, 16]).
We have implemented a number of further extensions including the ability to
deal with a Multi-Gaussian Expansion of the surface brightness distribution
([3, 8, 13]). We have also shown that the large data sets that are provided by
instruments such as SAURON can be modelled without any problems ([26]).

Recently, we completed the non-trivial extension to the software that al-
lows inclusion of kinematic measurements in triaxial geometry ([27]). As in the
axisymmetric case, observational effects such as pixel binning and point-spread-
function convolution are taken into account. The chaotic orbits are dealt with
in the ‘standard’ way (see [24]), and the line-of-sight velocity profile is used to
constrain the models. In the next two sections, we describe two applications in
more detail, one in axisymmetry and the other for a triaxial intrinsic shape.
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3 Axisymmetric Models for M32

We applied our axisymmetric modeling software to the nearby compact E3
galaxy M32 ([26]). By complementing the SAURON maps (Fig. 1) with high-
resolution major axis stellar kinematics taken with STIS ([10]), the models are
constrained at both small and large radii, which allows us to measure an accurate
central black hole mass MBH, stellar mass-to-light ratio M/L, and inclination
i. The left panels of Fig. 2 show the dependence of ∆χ2, which is a measure
of the discrepancy between model and data, on MBH, M/L (in solar units,
for the I-band) and i. The inner three contours show the formal 1, 2 and 3σ-
confidence levels for a distribution with three degrees of freedom. The black hole
mass and mass-to-light ratio are constrained tightly at M• = 2.5 × 106M� and
M/L = 1.8M�/L�, and the inclination is constrained to a value near 70◦ ± 5◦.
The right panels of the same figure show similar contours, but now for a data-
set consisting of the STIS-kinematics together with four slits extracted from
the SAURON-data. In this case the constraints on all three parameters, but most
notably on the inclination, are much less stringent. This demonstrates that two-
dimensional observations are essential to gain insight into the intrinsic structure
of galaxies.

Fig. 1. Top panels: the SAURON kinematic maps for M32. From left-to-right: the mean
velocity, velocity dispersion and Gauss–Hermite parameters h3 and h4, which measure
the first and second order deviations of the line-of-sight velocity distribution from a
Gaussian shape. Bottom panels: idem, but now for the best-fit axisymmetric dynamical
model with I-band M/L = 1.8M�/L�, MBH = 2.5 × 106M�, and i = 70◦.
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Fig. 2. Dynamical models for M32 ([26]). The panels show contours of the goodness-of-
fit parameter ∆χ2 as a function of the central black hole mass MBH, the stellar mass-
to-light ratio M/L and the inclination i. Each dot represents a specific axisymmetric
dynamical model. The intrinsic flattening q of the models is indicated in the lower-right
corner of each panel. The models are constrained by STIS kinematics along the major
axis ([10]) together with two-dimensional observations obtained with SAURON in its
high resolution mode ([29]). The inner three contours represent the formal 1, 2 and 3σ-
confidence levels for a distribution with three degrees of freedom. Left panels: model fits
to a data set consisting of the STIS-data and the full SAURON field. Tight constraints are
placed on the central black hole mass and mass-to-light ratio, as well as on the allowed
range of inclinations. Right panels: the ∆χ2 for models that were constrained by four
extracted slits from the 9′′ × 11′′ SAURON field (major and minor axis, and at ±45◦, as
in [11]) and the STIS data. This shows that the traditional kinematic coverage provides
almost no constraint on i, and that the resulting uncertainties on the inferred values
of M/L and MBH are correspondingly larger.
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4 The Triaxial Galaxy NGC 4365

The upper panels of Fig. 3 show the stellar kinematics in the central 30′′ × 60′′

of the giant elliptical galaxy NGC4365, derived from two SAURON pointings ([7]).
The velocity field clearly shows a prominent decoupled core in the inner 3′′ × 7′′

Fig. 3. Observations and dynamical models for the E3 galaxy NGC4365. Top panels:
from left to right, the stellar velocity field, velocity dispersion, and Gauss–Hermite
moments h3 and h4, as observed with SAURON. The maps are based on two semi-
overlapping pointings, sampled at 0.′′8 × 0.′′8, and were constructed via a kinemetric
expansion to provide the best representation of the data that is consistent with an
intrinsically triaxial geometry (e.g., point-antisymmetry for the V and h3 maps, cf.
[5]). The original maps can be found in ([7]). The amplitude of the velocity field is
about 60 km/s, the peak velocity dispersion is 275 km/s, and the contours in the h3

and h4 maps range between ±0.10. The decoupled core measures 3′′ × 7′′. Bottom
panels: idem, but now for a dynamical model with average intrinsic axis ratios p = 0.93
and q = 0.69 (triaxiality parameter T = (1 − p2)/(1 − q2) ∼ 0.22), observed from a
direction defined by the viewing angles ϑ = 85◦ and ϕ = 15◦. This model reproduces
all the main characteristics of the observations ([28]).
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(cf. [23]). It has a rotation axis which lies 82◦ ±2◦ away from that of the body of
the galaxy, which rotates around its long axis. Such a structure is possible when
the shape is intrinsically triaxial because of the presence of orbits that have net
mean streaming around either the long or the short axis.

The globular cluster system of NGC 4365 shows evidence for an intermediate
age population ([15]). The SAURON linestrength maps, however, indicate a pre-
dominantly old stellar population ([7]), suggesting that the observed kinematic
structure may have been in place for over 12 Gyr and the galaxy is in stable
triaxial equilibrium. We therefore applied our developed modeling software to
this case, to investigate whether it is possible to reproduce all the kinematic data
in detail, and to constrain M/L and the intrinsic shape and orbital structure.

We represented the observed surface brightness distribution of NGC 4365 by
a Multi-Gaussian Expansion which accurately fits the observed radial variation
of ellipticity, the boxyness of the isophotes, and the modest isophotal twisting.
We derived the deprojected density by assuming that each of the constituent
Gaussian components is stratified on similar concentric triaxial ellipsoids. The
three Euler angles that specify the orientation of the ellipsoids can be chosen
freely. For each choice, we computed a library of 4000 orbits, obtained from 20
energy shells with 200 orbits each, covering the four major orbit families, and
including orbits from minor families and chaotic orbits. As the spatial resolution
of the SAURON measurements is modest, we did not consider the effect of a central
black hole. The preliminary results indicate that the quality-of-fit parameter ∆χ2

varies quite significantly with M/L and the parameters defining the intrinsic
shape. The lower panels of Fig. 3 show the predictions of one model that fits the
data well. This illustrates that the software works, and shows that NGC 4365 is
indeed consistent with a triaxial equilibrium shape.

In principle, best-fit values of the shape parameters, the direction of observa-
tion, and the mass-to-light ratio can be determined by a systematic investigation
of the parameter space, just as was done for M32. For triaxial systems this is a
very time-consuming effort, but a first-order guess of the galaxy parameters can
be obtained by using other, simpler, schemes (see, e.g., [21, 22, 25]). Our detailed
dynamical modeling software can then be used to explore this more restricted
parameter range. Work along these lines is in progress, and will make it possible
to deduce, e.g., the intrinsic properties of the kinematically decoupled cores seen
in many of these systems. Inclusion of higher spatial resolution data will allow
accurate measurement of the mass of the central black hole.

5 Concluding Remarks

We have presented two examples of recent results from our program to con-
struct detailed axisymmetric and triaxial dynamical models for galaxies in the
SAURON representative survey of nearby ellipticals, lenticulars and Sa bulges.
The panoramic SAURON observations tighten the constraints on the possible ori-
entation of a galaxy considerably. The extension of the modeling software to
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triaxial shapes including kinematic constraints works, and that it will help us
gain significant insight into the structure of early-type galaxies.
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Abstract. We present multicolor broad band BVRI photometry for a sample of 42
mixed morphology binary galaxies taken from the “Karachentsev Catalogue of Isolated
Pairs of Galaxies” (KPG). Images were obtained with 0.84m and 1.5m telescopes of
the Observatorio Astronómico Nacional, San Pedro Mártir, Baja California, México,
operated by the Instituto de Astronomı́a, UNAM. Our goal is to identify and isolate
some structural and photometric properties of disk galaxies and elliptical galaxies at
different stages of interaction.

1 Review

The mid to late 70’s saw an astronomical debate that led to the recognition that
gravitational interaction is an important factor in galactic evolution affecting
directly properties such as size, morphological type, luminosity, star formation
rate, and mass distribution (Sulentic, [20]; Larson & Tinsley,[14] ; Stocke, [19]).
According to current popular models of galaxy formation, galaxies are assembled
through a hierarchical process of mass aggregation, dominated either by mergers
(Kauffmann, White & Guiderdoni, [11]; Baugh, Cole & Frenk, [3]), or by gas
accretion (Avila-Reese, Firmani & Hernández [2]; Avila-Reese & Firmani, [1]).
In the light of these models, the influence of environment factors and interaction
phenomena in the shaping and star formation of the disks is natural, at least for
a fraction of the present-day galaxy population.

Pairs of galaxies occupy an initial position in the spectrum of galaxy popula-
tions and are used to measure, in approximate way, the mass of the components
as well as to know the form of the gravitational potential on the basis of the mor-
phology of the components and its evolution in time. For binary galaxies, current
ideas suggest that most physical pairs are morphologically concordant, that is,
with components showing similar initial star formation and angular momentum
properties. However, the number of (E+S) pairs (∼128) in The Catalogue of Iso-
lated Pairs of Galaxies in the Northern Hemisphere (KPG, Karachentsev, [8])
means that, for a flux limited sample (m < 15.7), more than two out of every
ten pairs are of the (E+S) type, suggesting that a considerable number of them
must be physical binaries. The KPG was done under a criterion of strict iso-
lation that excluded, as far as possible the optical pairs. Redshift information,
available for the whole (E+S) sample, suggests that most of them are likely to
be physically proximate. Digital Sky Survey images show that most of them
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have visible signs of disturbance; bridges, tails, common envelopes and distor-
tions that are regarded as evidence for gravitational interaction. In addition,
statistical studies indicate that a high fraction (∼ 65 %) show an enhancement
in the optical and FIR emission (Xu & Sulentic, [21]; Hernández-Toledo et al.,
[6]). This enhancement is interpreted as a by-product of interaction-induced star
formation activity in physical binaries (Rampazzo & Sulentic, [16]). This is at
odds with the current models of galaxy formation.

We present multicolor broad band BVRI photometry for a sample of 40
elliptical-spiral (E+S) binary galaxies taken from the “Karachentsev Catalogue
of Isolated Pairs of Galaxies” (KPG). Images were obtained with 0.84m and 1.5m
telescopes of the Observatorio Astronómico Nacional, San Pedro Mártir, Baja
California, México, operated by the Instituto de Astronomı́a, UNAM. Images
were calibrated using standard stars from Landolt’s [13] list.

Our goal is to identify and isolate some structural and photometric properties
of disk galaxies and elliptical galaxies at different stages of interaction.

2 Interactions, Mergers and Evolution

Most E+S pairs show signs of disturbance like bridges, tails, geometric and
morphologic distortion, and in some cases nuclear activity, which are evidence
of gravitational interactions.

Karachentsev [8] identified three basic interaction classes (AT, LI and DI)
that describe the pairs which show obvious signs of interaction. AT class identifies
pairs with components in a common luminous halo with a symmetric, amorphous
or shredded, asymmetric (sh) structure (Fig. 1a). LI pairs show evidence of tidal
bridges (br), tails (ta) or both (br+ta) (Fig. 1b). DI pairs show evidence of
structural distortion in one (1) or both (2) components (Fig. 2a). We add to this
sequence NI for pairs with no obvious morphological distortion (Fig. 2b).

E

1’

N N

1’

E

Fig. 1. Interaction classes. a)Left: KPG83 (AT pair). b)Right: KPG591 (LI pair)
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Fig. 2. Interaction classes. a)Left: KPG29 (DI pair). b)Right: KPG38 (NI pair)

The order AT-LI-DI-NI can be regarded as a sequence from strongest to
weakest evidence for tidal distortion or, alternatively, most to least dynamically
evolved (interpreting a common envelope as a sign of extensive dynamical evo-
lution in pairs).

While mergers between comparable mass galaxies may be responsible for
some of the most dramatic extragalactic events, minor mergers of small mass
satellites may play a subtle but nonetheless critical role in the evolution of galax-
ies. Satellites are commonly found in the vicinity of normal galaxies (Zaritsky
et al., [22]).

3 Surface Photometry

Mixed pairs of galaxies are excellent laboratories for the study of interaction in
galaxies because they represent a set of objects in which we see the effects of the
interaction of a rich gas object (S member) on the presence of a relatively clean
disturber (E member).

The surface brightness profile of a galaxy is produced by the spatial distri-
bution of the stars as well as the spatial distribution of the dust. To discuss the
optical morphology (that could be modified by the presence of bars, spiral arms,
rings, etc) and its relationship to the global photometric properties, the final re-
sults for each pair are presented in the form of a mosaic (see Fig. 3). Each mosaic
includes: 1)A B-band image, 2) A B-band filtered image, 3) Surface brightness
and color profiles, and 4) Its correspondent geometric profiles (radial ε, P.A.
and A4 coefficient). In most of the cases, foreground stars in the field have been
removed.

We are proposing to use our filtered images in combination with the estimated
geometric and surface brightness profiles to look for morphological features in
more detail. The morphologic evaluation can be done in three parts: 1.- Visual
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Fig. 3. KPG260 Mosaic. Top left: B-band image. Top right: B-band filtered image. Bot-
tom left: Surface Brightness Profile and Geometric Parameters for KPG260A (west).
Bottom right: Surface Brightness Profile and Geometric Parameters for KPG260B
(east).

identification of false pairs E+S. 2.- Evaluation of the geometric parameters for
each component. 3.- Evaluation of all characteristics, mainly those related to
structures like spiral arms, shells, rings, bars and large regions of stellar forma-
tion, presumably associated with the interactions.

HST has revealed that the cores of some ellipticals (as well as the central
regions of some spirals) have an excess of light relative to the de Vaucouleurs
law fit. The excess light and rapid decline are evidence for central black holes.
Some bright ellipticals also deviate from the de Vaucouleurs law in their outer
regions, with a surface brightness in excess of the expected fit. There is evidence
that mergers, capture of material and tidal disturbances from other galaxies play
an important role in the final structure of elliptical galaxies.
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On the other hand, spiral galaxies have bulges that are very similar to ellip-
tical galaxies. In the disk, the brightness decreases approximately exponentially,
with a characteristic scale of length for each galaxy. Barred galaxies, like non-
barred galaxies, have exponential disks. There are two types of bars: Flat bars
have almost constant surface brightness along the bar, that is, they have a much
shallower decline than the disk. Exponential bars, in contrast, have the same
scale of length as the disk.

Measurements of surface brightness profiles are essential for quantitative in-
vestigations of galaxy morphology, decomposition of bulge and disc, studies of
galaxy structure and stellar populations, and measurements of dust distribution.
Important parameters like the size, the distribution of mass, the star formation
rate, as well as the magnitude of nuclear activity can be determined with the
help of our observations.

4 Deviations from Perfect Ellipticity

The intensity of an elliptical galaxy can be expressed as:

I = I0 + An ∗ sin(n ∗ φ) + Bn ∗ cos(n ∗ φ) (1)

where φ measures the position angle of the major axis. The An and Bn coeffi-
cients for n > 1 represent the amplitudes of the deviations form perfect ellipticity,
which are typically around 1 %. The quantity :

a4

a
=

√
1 − ε ∗ B4

a ∗ | dI
da | (2)

(see Bender & Möllenhoff, [4]), were a is the length of the isophote’s semimajor
axis, forms a dimensionless measure of the diskiness of the isophote, indicate
whether a galaxy is boxy (a4/a < 0) or disky (a4/a > 0). See Fig. 4.

The traditional view on the formation and evolution of giant elliptical galaxies
is that they are very old stellar systems and all formed very early at a redshift of
more than two (Searle, Sargent & Bagnuolo [18]). Alternatively, hierarchical the-
ories of galaxy formation predict that massive galaxies were assembled relatively
late in many generations of mergers of disk-type galaxies or smaller subunits and
mass accretion. It has been argued by Kauffman [9] and Kauffman & Charlot
[10] that this merger scenario is consistent with observations of elliptical galaxies
at different redshifts. Naab & Burkert [15] performed a large set of collisionless
N-body simulations (taking into account the stellar and dark matter component)
of merging disk-galaxies with mass ratios of 1:1, 2:1, 3:1, and 4:1. They show
that 1:1 merger remnants rotate slowly, are supported by anisotropic velocity
dispersions, have significant minor-axis rotation, and show predominantly boxy
isophotes in good agreement with observations of bright giant ellipticals. 3:1 and
4:1 remnants are isotropic, fast rotators, show a small amount of minor-axis ro-
tation, and have disky isophotes in perfect agreement with observations of faint
fast rotating giant elliptical galaxies. 2:1 remnants show intermediate properties.
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Fig. 4. Example of an elliptical galaxy with isophotal twist and external disky struc-
ture. Left: B-band image of KPG552. Right: Surface Brightness Profile and Geometric
Parameters for KPG552B (west).

Projection effects lead to a large spread in the data in good agreement with our
observations.

The frequency and spatial distribution of disky and boxy ellipticals in pairs
E+S could provide interesting information on the frequency of equal- and un-
equal mass mergers in different environments

5 Isophotal Twist

The major axis position angle (PA) gives the orientation of the galaxy in the
sky: it is measured counterclockwise from north to the major axis. Variation of
PA with radius, or twist, may be an indication of triaxiality for elliptical galaxies
with no axis of rotational symmetry. Isophotal twist may be common in spirals.
Such twist may also be interpreted as an indication of the presence of small bars,
rings or nonaxisymmetric bulges in the central regions. Variations in ellipticity
are associated with a isophotal twist.

6 The Holmberg Effect

Holmberg [7] compared the photographic colors of paired galaxies and found a
significant correlation between the colors of pair components. The physical ex-
planation of the Holmberg effect is complex, it has been interpreted as reflecting
a tendency for similar types of galaxies to form together (morphological con-
cordance), a possible reflection of the role of local environment in determining
galaxy morphology, but alternatively, it can presumably also reflect mutually
induced star formation (Kennicutt et al., [12]) in physical pairs.
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Fig. 5. Holmberg Effect. Left column:color index of the fainter member in a E+S pair
(secondary component) referred to the color index of the brighter (primary component).
Right column: color index of the S member versus the color index of the E member.

Figure 5 show the Holmberg Effect for our sample. The color correlation
between pair components in mixed pairs is poor in any plot, contrary to the
results of Demin [5]. Any tendency, if present, could be explained by the intrinsic
scatter in the (B−V )0T - Morphological Type correlation as reported by Roberts
& Haynes [17]. However the evidence is not conclusive due to the magnitudes
are not corrected by galactic extinction, K-correction and inclination correction.
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7 Summary

Until this moment, we conclude that:
• An important number of E+S pairs are misclassified (∼ 25 %). The pairs

not classified as true (E+S) pairs are primarily of two types: 1) disky pairs com-
posed of spiral and lenticular components and 2) early pairs composed of ellip-
tical and lenticular components. Both of these classes raise interesting questions
about galaxy formation because of the discordant star formation and angular
momentum properties of the components.

• Most spirals in mixed pairs have redder colors than normal spirals [(B-V)
> 0.6] which could be related with formation of dust by an event of starburst.

• On the other hand, the ellipticals in mixed pairs have redder colors than
normal ellipticals too [(B-V) > 0.9] which could be related with transference of
gas and dust belonging to the spiral galaxy.

• In E+S pairs, “grand design” spirals are common and luminous, whereas
a few low-luminosity S members exhibit flocculent spiral structure.

• Boxy ellipticals tend to be more luminous than disky ones, in E+S pairs.
• Possibly boxy ellipticals are formed by mergers of (mostly) ancestral ob-

jects. On the other hand, disky ellipticals may have been formed from a single
proto-galaxy, or from the merger of mainly gaseous ancestral objects.

• Morphological distortion is common in all the sample.
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1 Institute of Astronomy, University of Latvia, Raina blvd 19, Riga LV-1586, Latvia;
dima@latnet.lv

2 Ventspils International Radio Astronomy Center, Akademijas laukums 1-1503, Riga
LV-1050, Latvia; kberzins@latnet.lv

Abstract. We describe the spline histogram algorithm which is useful for visualiza-
tion of the probability density function setting up a statistical hypothesis for a test.
The spline histogram is constructed from discrete data measurements using tensioned
cubic spline interpolation of the cumulative distribution function which is then differ-
entiated and smoothed using the Savitzky-Golay filter. The optimal width of the filter
is determined by minimization of the Integrated Square Error function.

The current distribution of the TCSplin algorithm written in f77 with IDL and
Gnuplot visualization scripts is available from www.virac.lv/en/soft.html.

1 Introduction

Whenever one makes a physical measurement one obtains a discrete result, start-
ing from spatial measurements and ending with classification of some set of ob-
jects by some quantity. Particular measured value follows from the statistical
properties of the system strictly following the probability distribution function,
hereafter PDF. The PDF, in its turn, is determined by the physical properties of
the system. If a measured data set is statistically complete then its PDF contains
information about the system’s physical properties. The PDF shows a character
of unimodal or multimodal systems. It is natural to assume that the PDF of
unimodal physical systems contain only one global maximum and several max-
ima indicate the multimodality of a data set. Therefore the shape of the PDF
allows one to classify the measured data points, e.g. to find structure in case of
positional measurements.

In statistics it is widely accepted to use histograms as the PDF approxima-
tions. It is also well known that ordinary histograms being dependent on two
free parameters (bin size and its location) give very subjective results. Many
methods have been developed trying to solve this problem [5]. However, most of
them are still dependent on some parameters in a non-objective manner.

Generally, the probability density estimation methods can be divided into
two main groups: parametric and non-parametric. The first ones assume some
definite type of the PDF function (e.g. Gaussian or their superposition) and try
to find the best-fit parameters for it. A good such example is the KMM mixture
modelling algorithm [2]. A main disadvantage of these methods is that not all
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data sets can be well fitted with any chosen function. Rather often the real PDF
of physical system has significant difference from a chosen best-fit function, and
in many cases it is not known a priori what function it should be at all.

Non-parametric methods try to construct PDF estimates as compromise of
two opposite demands. First, the estimate should be as close as possible to the
measured PDF. Second, statistical noise due to a finite volume of the selection
should be filtered out. There are several ways how to do it.

It is possible to minimize a functional that is a sum of two terms – the sta-
tistical noise and the one increasing with a difference between data points and
the PDF estimate (Vondrak’s method) [21]. Unfortunately, there is still one free
coefficient responsible for the smoothing degree. This coefficient is not deter-
mined in any automated way and usually is found from good-looking conditions.
Another method is to convolve the initial guess of the PDF with some kernel
(kernel methods) for data smoothing. Also in this case there remains a free co-
efficient – the kernel width, that is responsible for smoothing of the function in
an “optimal way”, besides the result is weakly dependent on the chosen kernel
shape [5], [20].

There is, however, a method that allows one to choose an optimal smoothing
width: the PDF should not be over-smoothed and lose its true features, and
the noise level should be diminished as far as possible on the other hand. This
method is described e.g. in [20]. Its main idea is to define an Integrated Square
Error (ISE) function that shows the difference between the real PDF and its
estimate, and then to minimize it. The ISE function method is implemented
for kernel methods in e.g. [15], and results are encouraging. However, the ISE
function itself is often rather noisy.

In this paper we propose another approach to estimate PDF of a given one-
dimensional data set in automatic and optimal way. This is the spline histogram
method. We have found that the tensioned cubic splines are suitable for this task
and the corresponding algorithm has been called TCSplin. The current version
of the TCSplin code is freely available in the internet, it is also included in the
CD-ROM.

For demonstration purposes in this article we will use the spline histogram al-
gorithm to find a “well determined” redshift structure of galaxies within clusters
Abell 2256 and Abell 3626.

This paper has the following structure. The spline histogram algorithm will
be discussed in section 2. Bootstrapping simulations, discussed in section 3,
help to evaluate errors of the PDF estimates. In section 4 the spline histogram
application to data sets of clusters of galaxies A2256 and A3526 will be shown
as examples. Finally, some concluding remarks will be given in section 5.

2 The Spline Histogram Algorithm

The spline histogram method is a non-parametric approach for reconstruction of
probability density function underlying statistical selection. It was first discussed
in [4] as one of possible methods to detect substructure in clusters of galaxies.
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Recently it was further developed in [9] and these results are summarized in this
paper.

From spectroscopic observations we obtain redshifts of galaxies in clusters.
Let us denote redshift of the ith galaxy by zi and order them ascendentally
(zi ≤ zi+1). Next step is to construct a step-like cumulative distribution function
(CDF) obtained purely from observational data: Fobs(cz) = N(zj < z)/Ngal,
where N(zj < z) is a number of galaxies with redshift smaller than z, and Ngal

is a total number of detected galaxies, c is the speed of light. At this stage we
assume that the data set is statistically complete being representative of the
physical situation. The PDF f(x) by definition is the derivative of Fobs(cz) in
respect to cz. If CDF is constructed as shown before then f(x) is a sum of Dirac
δ-functions.

In the spline histogram method the points zi with ordinates Fobs(czi) are
consequently connected by non-decreasing smooth analytical spline S(cz). After
construction of S(cz) the latter is analytically differentiated leading to the PDF
estimate f̂(cz). This procedure guarantees that the obtained continuous PDF is
in agreement with the discrete distribution of the data points. The PDF contains
all initially observed information about the cluster and it has a lot of noise as a
consequence. To diminish the noise, f̂(cz) has to be smoothed.

Trying to utilize usual cubic splines for interpolation of the CDF, one en-
counters the problem that they will generally have negative derivative intervals
if both first and second derivatives in the data points are put to be equal. Al-
though there is an infinite amount of possibilities how to construct a smooth
continuous spline that has non-smooth first derivative at data points.

We have found that tensioned cubic splines (hereafter TCS) nicely fit all
spline histogram needs. They are defined such that the cubic polynomial spline
length between two data points is minimal, and only the interpolating function
and its first derivative are continuous in data points. Also in this case sometimes
a derivative of the TCS is negative. Then in order to exclude a non-physical
decreasing of the CDF estimate, we use non-tensioned splines increasing accord-
ingly the spline length within these regions.

To reduce the statistical noise, the algorithm has been symmetrized. For
the same purpose there was added a possibility to unite close points in the
data set, that would otherwise give unphysical high PDF peaks. Nevertheless
the resulting PDF is noisy and due to this the next step of the algorithm is a
smoothing procedure.

In our case the noise is seen as narrow high peaks in the PDF arising from
high CDF derivatives between close data points. The Savitzky-Golay filters [16]
have been chosen for the smoothing remembering that PDF construction without
any a priori knowledge about the system character was one of the main reasons
for developing the spline histograms. These filters locally conserve first moments
of the smoothed function. The remaining problem is to define the optimal width
of the filter such that it reduces the noise but not over-smoothes the real PDF
features.
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This is done using the Integrated Square Error (ISE) function [20]:

ISE(f̂(cz)) =

czmax∫
czmin

(
f̂(cz) − f(cz)

)2
d(cz), (1)

where f(cz) is a true PDF underlying the observed selection, and f̂(cz) is a PDF
estimated from the observed data, i.e. the smoothed spline histogram in our case.
As we are using digital filters to smooth the data, this should be rewritten for
case of discrete points. It follows from the theory [18], [9], [20] that quantity
P (h) will have minimum for the same smoothing width h as ISE(f̂(x)):

P (h) =
N∑

i=1

(
f̂(czi)2 − 2f̂(czi) + 2C

(h)
0

)
, (2)

where C
(h)
0 are the smoothing filter zeroth coefficients, and it was taken into

account that
∑N

i=1 f̂(czi) = N . In contrary to the equation defining the ISE
function, P (h) can be easily calculated from the data.

The filter width that gives the minimal P (h) value is the optimal one because
the corresponding deviation between the true and estimated PDFs is also min-
imized. As a result the spline histogram is obtained but it says nothing about
the remaining statistical noise level in it. To find it out we use a bootstrapping
technique described in the next section.

3 Simulated Data Analysis

Simulated data are produced and analysed as follows. Using the obtained spline
histogram as a true PDF, we generate the same amount N of random numbers.
Then from this selection we compute another smoothed spline histogram. Re-
peating this sufficient number of times (say 100), one can calculate the average
of the simulated spline histograms and its scattering. It is useful to character-
ize the scattering by the distribution quartiles. The upper quartile shows that
the estimated PDF has 75% probability to be below it. For the lower quartile,
accordingly, this probability is 25% (see Fig. 1).

To estimate the quality of the approximation, the first moments of several
simulated distributions were computed and compared with the original values
(see Table 1). It can be seen that the average values are the same within sta-
tistical error bars (1σ), whereas the standard deviations are about 10% larger
than the original values because of the smoothing effect. For Gaussian distribu-
tions the asymmetry and excess are significantly different from zero, although
in non-Gaussian cases they are rather close to original values.

Dependence of the smoothing size on the selection volume was also analysed.
From theoretical considerations [18], [20], [15], we know that the optimal smooth-
ing size depends on the selection volume N in the following way: hopt ∝ N−1/5.
Analysing different volume random number selections for the same initial distri-
bution, we have empirically found that for our algorithm hopt ∝ N−0.195, that
shows an excellent agreement with the theoretical prediction.
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Table 1. Moments of the initial distribution from simulations of the 500 point selection

Gaussian distribution Average St.Dev. Asymmetry Excess
General distribution 0.500 0.089 0.000 -0.006
Average from simulations 0.499 0.093 -0.486 2.287
St.Dev. from simulations 0.004 0.003 0.109 0.355
2 equal dispersion Gaussians Average St.Dev. Asymmetry Excess
General distribution 0.475 0.190 0.190 -0.718
Average from simulations 0.474 0.192 0.153 -0.676
St.Dev. from simulations 0.009 0.005 0.068 0.104
2 different dispersion Gaussians Average St.Dev. Asymmetry Excess
General distribution 0.565 0.190 -0.112 -0.836
Average from simulations 0.564 0.192 -0.165 -0.704
St.Dev. from simulations 0.009 0.004 0.064 0.105

Fig. 1. Result of the simulated distribution analysis. Original PDF is shown by the
thick solid line, the thin solid line represents the average value of 100 smoothed spline
histograms using 500 point selection each, and the lower and upper dashed lines are
the first and third quartiles, respectively.

4 Galaxy Cluster Data Analysis

As example we show the implementation of the algorithm on two clusters of
galaxies – Abell 2256 and 3526.

Abell 2256 is a rich regular cluster at z ≈ 0.06 (α ≈ 17h03.7m, δ ≈ +78◦43′,
equinox 2000.0 [1]). It has similar properties to the Coma cluster (similar X-ray
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luminosities, both have optical and X-ray substructure and a radio halo), but is
situated approximately 2.5 times farther.

A2256 has been previously studied in x-rays, optical and radio by several
authors, e.g. [10], [6], [7]. It is accepted and understood, that Abell 2256, being
one of the best studied clusters of galaxies, exhibit complex inner structure.

Result of the implementation of the TCSplin algorithm to the data of [10],
consisting of 89 galaxy redshift measurements, is shown in Fig. 2. From the
figure one can obviously see that the cluster is unrelaxed and has strongly non-
Gaussian velocity PDF. Most likely it consists of two or more merging parts that
currently are undergoing a final stage of unification.

Centaurus cluster A3526 (z ≈ 0.011, α ≈ 12h48.9m, δ ≈ −41◦18′, equinox
2000.0 [1]) has been extensively studied, as it is a nearby rich cluster of galaxies.
It is intermediate between Coma and Virgo clusters in richness and in distance
and has richness class 1 or 2 (e.g. [17]). Centaurus is irregular in appearance,
like Virgo. The cluster core has two apparent centres of concentration, one being
centred on NGC 4696 and the other being 0.5◦ further east ([12], [3]).

Extensive study of this cluster is made in [8], [13] and [14]. The research
included determination of redshifts for 259 galaxies and photometry for 329
galaxies within 13◦ field centred on the cluster, and the following analysis of
data. The bimodal galaxy velocity distribution and extensive substructure in
both subclusters have been found. Mean heliocentric velocities and line-of-sight
dispersions of two main cluster components, within 3◦ of the cluster centre, are
3041 and 586 km sec−1 (denoted Cen30), and 4570 and 262 km sec−1 (denoted
Cen45), respectively. The projected distributions of members of each component
overlap on the sky. Other small galaxy groups also have been found in this study.

Fig. 2. The spline histogram of A2256. The meaning of lines is the same as in Fig. 1
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Fig. 3. The spline histogram of A3526. The meaning of lines is the same as in Fig. 1

Recently bimodality of the cluster has been confirmed in [19]. The authors
used it to test a non-parametric method of the PDF estimation proposed by [11]
and the same two main features of the cluster were noticed.

Our result of processing the data set of [8] is shown in Fig. 3. We find the
same two main structures as in the original analysis. Clearness of these features
demonstrates the quality of the algorithm. Shape of each of these components
is close to Gaussian indicating their relatively relaxed state. Besides that the
spline histogram shows additional left “shoulder” of the Cen30 group at around
cz ≈ 2100 km sec−1. This probably is one of separate groups noticed by [14].
Possibly this as well as those features around 6200 and 8300 km sec−1 are not
spatially real but just the redshift space caustics artefacts.

We see that a direct implementation of the algorithm leads to a good estimate
of the PDF of clusters of galaxies. The only difference is the dispersions of the
group velocities that are overestimated due to our PDF smoothing. One should
keep that in mind and calculate the dispersion directly from the original data if
needed.

5 Concluding Remarks

This paper has demonstrated the usefulness of the spline histogram algorithm
in statistical studies of 1D data sets. It has all advantages over the well known
ordinary histogram approach estimating the probability density functions. In
principle the spline histograms may be expanded to higher dimensional cases but
that introduces higher effect of the sampling noise. Unfortunately enlargement
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of a data set size does not necessarily guarantee larger signal to noise ratio. More
generally it is dependent on the distribution character.

The latest version of the spline histogram algorithm TCSplin code is freely
available online from http://www.virac.lv/en/soft.html. Presently it is written
in f77 with IDL and Gnuplot visualization scripts.
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Abstract. Recent measurements of stellar velocities ([5], [7]) and variable X-ray emis-
sion [3] near the center of the Milky Way have already provided the strongest case for
the presence of a super-massive black hole in our Galaxy. Information on the enclosed
mass and stellar number density counts, in the central stellar cluster of the Galaxy,
now allows to derive realistic potentials to study stellar orbits. We present the results
of calculations using a 4th-order Hermite integrator. They provide valuable additional
information on the three dimensional distribution and dynamics of the He-Stars. We
also discuss the importance of Newtonian peri-astron shifts for stellar orbits in the
central cluster and how future observations with infrared interferometers (LBT, VLTI,
Keck) [6] will help to improve our understanding of the dynamics and distribution of
the stars in this region.

1 Introduction

Stellar proper motions, radial velocities and accelerations obtained with high
angular resolution techniques over the past decade have convincingly proven
the presence of 3 million solar masses in the center of our Galaxy. This mass is
associated with the compact radio source Sagittarius A* and currently represents
the best candidate for a super massive Black Hole. In this gravitational potential
at the center of the Milky Way, the stars show large orbital velocities. In the
central arcsecond those can be observed as proper motions via repeated imaging
at the highest possible resolution.The largest velocities in the vicinity of SgrA*
are several 1000 km/s with a maximum ≥5000 km/s for the early type star
S2. The location at the maximum stellar velocity dispersion and the center of
gravitational force, as determined from the orbital accelerations of the two stars
S1 and S2 agree to within less than 100 mas with the position of the compact
radio source SgrA*. These accelerations were consistent with bound orbits but
still allowed for a wide range of possible orbits ([9], [7]).

For the first time, and after 10 years of observations with the MPE speckle
camera SHARP at the ESO NTT and the new adaptive optics CONICA/NAOS
at the UT4 of the Very Large Telescope (VLT), we are now able to determine an
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Fig. 1. Orbit of S2, relative to the position of the compact radio source SgrA* (large
cross and circle, denoting the ±10 mas uncertainties of the infrared-radio astrometry).
The data obtained with the MPE SHARP camera at the NTT and the VLT UT4
NACO adaptive optics are shown. The projection of the best-fitting Kepler orbit is
shown as a continuous curve with its main parameters listed adjacent to the orbit.

orbit for the star S2, currently closest to the compact radio source SgrA* (semi-
major axis = 4.62 mpc), these data trace an almost complete orbit (Fig. 1) and
are well fitted by a bound, highly elliptical Keplerian orbit (ε=0.87), with an
orbital period of 15.2 years, requiring an enclosed point mass of (3.7±1.5)×106

M� [15]. This star passed through peri-center in April 2002, at a distance of
only 17 light hours from the radio source, when it moved at ≥5000 km/s.

2 Mass Estimate for the Inner Cusp

2.1 Stellar Density

With the highest spatial resolution observations presently available in the near-
infrared (50 - 60 mas), spatial scales from light hours to a few light years can be
probed. The new CONICA/NAOS data were estimated from direct and crowding
corrected Ks≤18 stellar counts of in annuli centered on the position of SgrA*.
They clearly confirm the presence of a local stellar concentration, a cusp centered
on SgrA*, indicated earlier by the SHARP/NTT and KECK data ([4], [1]). To
estimate the cusp mass, we were able to fit the combined SHARP and CONICA
stellar count data with a superposition of several Plummer models of the form:
ρ(r)=ρ(0)[1+(r/R)2]−α/2 (α=5), with different densities ρ(0), and different core
radii R. Fig. 2 shows three different fits, where the dotted curve shows a fit for
the inner cusp with a PLummer model of a core radii R=0.55” and a spatial
density ρ(r)=4.35*107 M� pc−3. The solid line shows the sum of that initial
model with a further inner Plummer model of R=0.135” and ρ(r)=6.5*108 M�
pc−3. The average fit is shown in the large dotted curve. It is similar to the solid
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Fig. 2. A Plummer Model fit to the surface density of stars as a function of distance.
The grey, filled circles represent the CONICA/NAOS data for Ks≤18. The darker, filled
diamonds represent the SHARP/NTT data for stars with Ks≤15, and scaled upward
by a factor of 5 in order to match the fainter CONICA/NAOS counts [8]. The small
dotted curve and the solid curve represent the minimum and maximum fit to the data
with our model, respectively. The big dotted middle curve represents the average fit.

curve but with a smaller density of ρ(r)=3.25*108 M� pc−3 of the additional
R=0.135” component.

2.2 The Enclosed Mass

From these parameters, we were able to derive the enclosed mass as a function of
the separation from the Galactic Center. Under the assumption that the mass to
light ration of the inner cluster is comparable to that of the outer cluster (M/L∼
2µm), the mass present at a distance of 0.55” from the BH was evaluated to be
between 5000 M� and 6100 M�. Figure 3 shows 3 different curves in solid,
dash-dotted and grey dotted. Similar to Fig. 2 they correspond to maximum,
mean, and minimum fit, respectively. Using a fourth order Hermite integrator
derived from the one used in high-accuracy N -body simulations ([2], [13] for
the first introduction of the Hermite scheme see [10]), and adapting the mid-
value of our models, we computed ,for an S2 like orbit [15] , the trajectory
of a star through the extended mass and around the BH . The Hermite scheme
allows a fourth order accurate integration based on only two time steps. For that
it requires the analytic computation of the time derivative of the gravitational
force; therefore the use of Plummer model superpositions as they are used here is
very convenient. Further studies with more general density distributions should
be undertaken , because they may influence the precise value of the periastron
shift. Also it should be noted that this integration is purely classical so any
relativistic periastron shifts are not taken into account.



Galactic Center 305

The resulting retrograde periastron shift amounts to a value of ∼1.7 arcmins
per orbital revolution which is few times smaller than the relativistic prograde
periastron shift [12]. Figure 4 below gives us different periastron shift values for
different cusp masses, i.e. mass to light ratios.

Fig. 3. Mass distribution in the central 10 pc of the Galaxy. In black a model fit to
the data [8] resulting from the Plummer models fit to the stellar number density data
and a 3×106 M� black hole. The 3 lower curves show a the stellar enclosed mass only.
They clearly show the contribution of the inner cusp to the overall mass. The grey
dotted curve represents a minimum of 5000 M� present inside a sphere of 0.55”. The
dash-dotted curve is the same as for the first curve with an additional mass of 550 M�
present in 0.135”. The solid curve is similar to the dash-dotted curve but with a larger
additional mass of 1100 M�

Fig. 4. Variation of the periastron shift with the inner cusp mass.



306 Nelly Mouawad et al.

3 Estimate of the Line of Sight Positions
of 13 Helium Stars

An enigmatic case in the central cluster of our Galaxy is the presence of the
He I emission line stars and other early type stars (e.g in IRS16/13 complexes).
They are confined in a projected radius on the sky not larger than about 400
mpc. Genzel et al. [8] show that most of them are on tangential orbits and
seem to have a projected clockwise rotation on the sky. A determination of the
spatial positions of these stars, will help to clarify the way they were formed,
how they heat the gas and dust in the central parsec, and - potentially - how
they influence the accretion stream onto the central arcsecond. We studied 13
(of the 29 known) He I emission-line stars, for which Genzel et al. [8] had given
3D velocities, and 2D projected separations from SgrA* (see also the list in
[11]). With these parameters we compute the trajectories of the stars using a
fourth order Hermite integrator, and assuming a potential derived from the the
plummer model fit described above (Fig. 3).

Assuming that these stars are orbiting inside a sphere of 400 mpc or inside
a sphere of 200 mpc, we can then determine the maximum line of sight ranges
for the different stars. Figure 5 shows the results obtained for the 400 mpc case
(dotted) and the 200 mpc case (solid black). For some of the stars the line of

Fig. 5. The dash-dotted exterior circle is the projection of a sphere of 400 mpc of
radius, Black solid interior circle is the projection of a sphere of 200 mpc. Dotted red
bars are possible ranges along the line of sight positions of the He-stars with orbits
that stay well within a sphere of 400 mpc, and for the case of the black solid bars well
within a sphere of 200 mpc of radius. The crass at the center represents the position
of SgrA*.
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sight position is not very well constrained and the range can be quite large with
respect to the radius of the sphere.

However, the result can be tested by making use of the fact the early type
stars are mostly on tangential orbits and therefore show a significant anisotropy
[8]. We computed the anisotropy parameter

γ = (V 2
T − V 2

R)/(V 2
T + V 2

R) (1)

for 13 early type stars, covering one or more orbital time scale. For the 2 cases,
13 different random distributions of our sample in the possible ranges of line of
sight positions were chosen, and the γ-value for 11 different snapshots in times
calculated. Figure 6 results in the summation of 130 different combinations for
the first case shown in the black solid line, and for the second case in a dotted
line. The dotted histogram (200 mpc radius) shows clear anisotropy behaviour
towards tangential orbits. This trend is less pronounced for the black curve
(400 mpc radius).

We can conclude that the He stars of our sample are present mostly inside
a sphere of about 200 mpc. A further constraint can be introduced via the
presence of the mini-spiral, especially the northern arm. Here we can take into
account that inspite of its presence some of the stars are not reddened (e.g IRS16
complex), and we deduce that these stars should be located in front of the mini-
spiral. Vollmer & Duschl [14] give a model of the mini-spiral and describe the
northern arm via gas motion within a plane and give its orientation. In Fig. 7,
we show the final possible ranges in the line of sight direction obtained for our
sample of stars taking al constraints into account that we mentioned above. The
table gives the appropriate values of spatial positions for each star.

Fig. 6. Histogram of the anisotropy parameter γ=(VT
2-VR

2)/(VT
2+VR

2). Summation
of 26 arbitrary distributions of the 13 Helium stars. The distribution covers a complete
range in the line of sight positions of our sample. In dotted and black solid histogram
lines, values are plotted considering that the He stars orbit inside a sphere of 200 mpc
and 400 mpc of radius, respectively
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Fig. 7. The final possible ranges for the line of sight positions of the helium stars are
represented by bars, the crass at the center represents the position of SgrA*

Table 1. Positions of the 13 He-stars including the ranges of possible for their minimum
and maximum line of sight positions with respect to the plane of the sky that includes
SgrA*.

He Stars Names R.A[mpc] Dec[mpc] Max Z[mpc] Min Z[mpc]

IRS16NW +1.99 +46.05 169 0.0
IRS16C -47.21 +17.03 44.5 0.0

IRS16SW -41.00 +37.92 29 0.0
IRS16CC -79.72 +19.74 88 0.0

IRS29N + 61.50 +54.57 123 -180.2
IRS16SE1 -71.98 -44.89 3 0
IRS29NE1 +35.22 +78.95 124 -98.0
IRS16NE -111.8 +42.6 45 0.0
IRS16SE2 -114.94 -46.4 35 0.0

IRS33E -19.35 -127.7 71 -120.0
IRS7SE -96.75 +104.89 47 -40
IRS34W +157.89 + 62.69 58.5 -31.5
IRS7W +151.32 +193.5 59 -83
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Angular Momentum Redistribution
and the Evolution and Morphology of Bars

Lia Athanassoula
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Abstract. Angular momentum exchange is a driving process for the evolution of
barred galaxies. Material at resonance in the bar region loses angular momentum which
is taken by material at resonance in the outer disc and/or the halo. By losing angular
momentum, the bar grows stronger and slows down. This evolution scenario is backed
by both analytical calculations and by N -body simulations. The morphology of the bar
also depends on the amount of angular momentum exchanged.

1 Introduction

Bars are common features of disc galaxies. De Vaucouleurs ([11]), using a classi-
fication based on images at optical wavelengths, found that roughly one third of
all disc galaxies are barred (family SB), while yet another third have small bars
or ovals (family SAB). Observations in the near infrared have shown that galax-
ies that had been classified as non-barred from images at optical wavelengths
may have a clear bar component when observed in the near infrared. Thus Es-
kridge et al. ([17]) classified more than 70% of all disc galaxies as barred, while
Grosbøl, Pompei & Patsis ([18]) found that only ∼ 5% of all disc galaxies are
definitely non barred.

Bars come in a large variety of strengths, lengths, masses, axial ratios and
shapes. Great efforts have been made in order to obtain some systematics on bar
structure and important advances have been made. Elmegreen & Elmegreen ([16])
have shown that earlier type bars are relatively longer (i.e. relative to the disc
diameter) on average than bars in later type galaxies. They also find that early
type bars have flat intensity profiles along the bar major axis, while late type
bars have exponential-like profiles. A correlation has been found ([5], [27]) be-
tween the length of bars and the size of bulges. This is in good agreement with
the trend found in [16], since earlier type galaxies have larger bulges than late
types. Important differences between early and late type bars are also found with
the Fourier decomposition of the surface density. Indeed the relative m = 2 and
4 components are much stronger in early than in late type bars. Moreover, the
higher order components (m = 6 and 8), which for the late type bars are negligi-
ble, are still important for early types. Finally, the shape of the bar isodensities
differ and Athanassoula et al. ([7]), using a sample of strongly barred early type
galaxies, showed that their bar isophotes are rectangular-like, particularly in the
region near the end of the bar.

The first trials of N -body simulations (e.g. [28]) show that bars grow sponta-
neously and are long-lived. Yet it is only recently that simulations have achieved
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sufficient quality to provide information on the morphology of N -body bars and
on the mechanisms that govern bar formation and bar evolution. I will here dis-
cuss some of the latest results of N -body simulations. I will argue that it is the
exchange of angular momentum within the galaxy that will determine the bar
strength and the rate at which the pattern speed decreases after the bar has
formed, as well as the bar morphology.

2 Angular Momentum Exchange and Bar Evolution

Exchange of energy and angular momentum between stars at resonance with
a spiral density wave has been first discussed by Lynden-Bell & Kalnajs ([26]).
Using linear perturbation theory, these authors showed that, for a steady forcing,
stars emit, or absorb, angular momentum only if they are at resonance. Stars
at the inner Lindblad resonance (hereafter ILR) lose angular momentum, while
stars at the outer Lindblad resonance (hereafter OLR) gain it. This ground-
braking work has to be extended in order to be applied to bars in general and
N -body bars in particular. HI observations, basically starting with [10], have
now established that, if Newton’s law of gravity is valid, then disc galaxies are
embedded in a dark matter component, called the halo, whose mass exceeds that
of the disc. This component should now be taken into account as an extra partner
in the angular momentum exchange process. Furthermore, bars are strongly
non-linear features, since they contain a large fraction of the mass in the inner
parts of the disc and a considerable part of the total disc mass. Thus any linear
theory should be thought of as a guiding line, to be supplemented by and tested
against adequate N -body simulations. It is obvious that such simulations should
be fully self-consistent, since rigid components can not exchange energy and
angular momentum.

In [4] I extended the analytical work of [26] to include spheroidal components,
like a halo and/or a bulge, and also supplemented it with fully self-consistent
N -body simulations. In the analytical part I showed that, if the distribution
function of the spheroidal component is a function only of the energy, then at
all resonances the halo and bulge particles can only gain angular momentum.
Also, since the bar is a strongly nonlinear feature, higher multiplicity resonances
should be taken into account. Thus angular momentum is emitted by particles
(stars) at the resonances in the inner disc, mainly the ILR, but also the inner
-1:m resonances nearer to corotation (hereafter CR). It is absorbed by disc par-
ticles (stars) at the OLR, or the outer 1:m resonances, outside corotation, or by
the resonant particles in the halo and/or bulge components. Since the bar is a
negative angular momentum perturbation ([26]), by losing angular momentum
it will grow. This clearly outlines a scenario for the evolution of barred galaxies.

3 The Effect of the Halo on Bar Evolution

As the bar loses angular momentum, it grows stronger. This, however, can only
happen if there are absorbers that can absorb the angular momentum that the
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bar region emits. Thus the existence of a massive halo component, whose res-
onances can absorb considerable amounts of angular momentum, will help the
bar grow. At first sight this may be thought to go against old claims that haloes
stabilise bars. In fact, a more precise wording is necessary. Indeed, the halo
slows down the bar growth in the initial stages of the evolution. At later stages,
however, the situation can be reversed, since the halo may absorb the angular
momentum emitted by the bar, and thus it may allow the latter to grow further.
Thus bars that grow in halo-dominated discs can be stronger than bars that
grow in disc-dominated surroundings. This effect was not seen till recently, since
the older studies were either 2D (e.g. [33], [8]), or 3D but with few particles (e.g.
[31]), or had rigid haloes. In all these cases the halo was denied from the onset
its destabilising influence. Its effect becomes clear in fully self-consistent N -body
simulations, with an adequate particle number and resolution. Thus [6] showed
that stronger bars can grow in cases with more important halo components.

The influence of the halo is also illustrated in Fig. 1, where I compare the
results of two N -body simulations. Initially their disc is exponential, with unit
mass and scale-length (Md = 1, Rd = 1) and its Q parameter ([32]) is independent
of radius and equal to 1.2. Since G = 1, taking the mass of the disc equal to 5 ×
1010 M�, and its scale-length equal to 3.5 kpc implies that the unit of velocity is
248 km/sec and the unit of time is 1.4 × 107 yrs. This calibration is reasonable,
but is not unique, so in the following I will give all quantities in computer
units. The reader can then convert the values to astronomical units according to
his/her needs. The halo component is spherical, non-rotating and has an isotropic
velocity distribution. It follows a pseudo-isothermal radial density profile ([19])
and has a total mass Mh = 5, a core radius γ = 0.5 and a cutoff radius of rc = 10.
Its density is truncated at 15 disc scale-lengths, i.e. at a radius containing more
than 96% of its mass. In building the initial conditions I loosely followed [19]
and [6], and the simulations were run on the Marseille GRAPE-5 systems (for a
description of the GRAPE-5 boards see [22]). The only difference between the
initial conditions of the two simulations is that for simulation LH, illustrated in
the left panels, the halo is live and represented by roughly 106 particles, while for
simulation RH, illustrated in the right panels, it is rigid, i.e. represented by an
analytical potential and thus can neither emit nor absorb angular momentum.
Although their initial conditions are so similar, the two simulations evolve in
a very different way. After some initial multi-spiral episodes, LH forms a bar
which grows stronger with time. Its morphology at t = 700 is shown in the left
panels. The bar is long and strong and has ansae-type features near the end of
its major axis. It is surrounded by a ring, which can be compared to the inner
rings often observed in barred galaxies. The bar formation entails considerable
redistribution of the disc matter, both radially and azimuthally. On the other
hand the disc in simulation RH stays close to axisymmetric, except for some
multi-armed spirals which die out with time. Only at the latest stages of the
evolution does it form an oval distortion, and even that is weak and short and is
confined to the innermost parts of the disc, as can be seen for t = 900 in the right
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Fig. 1. Basic information on simulations LH (time t = 600) and RH (time t = 900).
The two upper rows give the circular velocity curves at time 0 and t. The dashed and
dotted lines give the contributions of the disc and halo respectively, while the thick full
lines give the total circular velocity curves. The third row of panels gives the isocontours
of the density of the disc particles projected face-on and the fourth and fifth row give
the side-on and end-on edge-on views, respectively. The side of the box for the face-on
views is 10 length units and the height of the box for the edge-on views is 3.33. The
isodensities in the third row of panels have been chosen so as to show best the features
in the bar and in the inner disc. No isodensities for the outer disc have been included,
although the disc extends beyond the area shown in the figure. The sixth row of panels
gives the m = 2, 4, 6, and 8 Fourier components of the mass.

panels of Fig. 1. I show this simulation at a later time than that for simulation
LH because at earlier times there is very little structure visible.

Seen edge-on with the bar seen side-on (i.e. with the line of sight along the
bar minor axis), simulation LH exhibits a very strong peanut, which is totally
absent from simulation RH (fourth row of panels). Seen edge-on with the bar
seen end-on (i.e. with the line of sight along the bar major axis), the peanut
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in LH resembles a bulge (left panel on fifth row). This underlines the hazards
involved in classifying edge-on galaxies, since the classifier may in such cases
easily misinterpret the bar for a bulge.

A useful way of quantifying the bar strength is with the help of the Fourier
components of the mass, or density. These can be defined as

Fm(r) =
√

A2
m(r) + B2

m(r)/A0(r), m = 0, 1, 2, ..... (1)

where

Am(r) =
1
π

∫ 2π

0
Σ(r, θ)cos(mθ)dθ, m = 0, 1, 2, ..... (2)

and

Bm(r) =
1
π

∫ 2π

0
Σ(r, θ)sin(mθ)dθ, m = 1, 2, ..... (3)

For runs LH and RH, these components for m = 2, 4, 6 and 8 are shown in
the lower panels of Fig. 1. For run LH all four components are important, due
to the strength of the bar. Their amplitude decreases with increasing m, while
the location of the maximum shifts outwards. On the other hand, for model RH
only the m = 2 component stands out from the noise, but its amplitude is rather
small, smaller than e.g. that of the m = 8 for model LH.

Since the only difference between the initial conditions of models LH and
RH is that the halo of the one is responsive, while that of the other is rigid, we
can conclude that the halo response is crucial for determining the evolution of
barred galaxies.

4 Bar Slow-Down

I ran a large number of simulations similar to those described in the previous
sections. I noted that, as it loses angular momentum, the bar grows longer,
and more massive, thus stronger. Angular momentum loss, however, is not only
linked to an increase in the bar strength. It is also linked to a slow-down, i.e. to
a decrease of the bar pattern speed Ωp with time. Such a slow-down has indeed
been seen in a number of simulations and has also been predicted analytically
([34], [36], [24], [25], [20], [1], [12], [13]). It can also be seen in Fig. 2, which shows
the run of the bar pattern speed with time for simulation LH, whose morphology
at time t = 700 is shown in the left panels of Fig. 1. Note that the bar slows
down considerably with time.

5 Resonances

In order for haloes to be able to absorb angular momentum, they need to have
a considerable fraction of their mass at resonance. This was shown to be true
in ([2]). I will illustrate it here for model LH. The procedure is the same as
that followed in [2]. I calculate the potential from the mass distribution in the
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Fig. 2. Bar pattern speed of simulation LH as a function of time.

disc and halo component at time t = 800, by freezing all motion except for the
bar, to which I assign bulk rotation with a pattern speed equal to that found in
the simulation at that time. I then pick at random 100 000 disc and 100 000 halo
particles and, using their positions and velocities as initial conditions, I calculate
their orbits for 40 bar rotations. Using spectral analysis ([9], [23]), I then find
the principal frequencies of these orbits, i.e. the angular velocity Ω, the epicyclic
frequency κ and the vertical frequency κz. An orbit is resonant if there are three
integers l, m and n, such that

lκ + mΩ + nκz = −ωR = mΩp (4)

Orbits on planar resonances fulfill

lκ + mΩ = −ωR = mΩp (5)

The ILR corresponds to l = –1 and m = 2, CR to l = 0, and OLR to l = 1 and
m = 2.

The upper panels of Fig. 3 show, for time t = 800, the mass per unit frequency
ratio MR of particles having a given value of the frequency ratio (Ω − Ωp)/κ
as a function of this frequency ratio1. The distribution is not uniform, but has
clear peaks at the location of the main resonances, as was already shown in [2]
and [4]. The highest peak for the disc component is at the ILR, followed by
(−1, 6) and CR. In all simulations with strong bars the ILR peak is strong. The
existence of peaks at other resonances as well as their importance varies from
one run to another and also during the evolution of a given run. For example
the CR peak is, in many other simulations, much stronger than in the example
shown here. For the spheroidal component the highest peak is at CR, followed
by peaks at the ILR, OLR and (−1, 4).

The lower panels show the angular momentum exchanged. For this I calcu-
lated the angular momentum of each particle at time 800 and at time 500, as
described in [4], and plotted the difference as a function of the frequency ratio

1 See [4] for more information on MR and on how it is derived.
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Fig. 3. The upper panels give, for time t = 800, the mass per unit frequency ratio, MR,
as a function of that ratio. The lower panels give ∆J , the angular momentum gained or
lost by the particles between times 800 and 500, plotted as a function of their frequency
ratio (Ω − Ωp)/κ, calculated at time t = 800. The left panels correspond to the disc
component and the right ones to the halo. The component and the time are written in
the upper left corner of each panel. The vertical dot-dashed lines give the positions of
the main resonances.

of the particle at time 800. It is clear from the figure that disc particles at ILR
and at the (−1, 6) resonance lose angular momentum, while those at CR gain it.
There is a also a general, albeit small, loss of angular momentum from particles
with frequencies between CR and ILR. This could be partly due to particles
trapped around secondary resonances, and partly due to angular momentum
taken from particles which are neither resonant, nor near-resonant, but can still
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lose a small amount of angular momentum because the bar is growing. The cor-
responding panel for the spheroid is, as expected, more noisy, but shows that
particles at all resonances gain angular momentum. Thus this plot, and similar
ones which I did for other simulations, confirm the analytical results of [4], and
show that the linear results concerning the angular momentum gain or loss by
resonant particles, qualitatively at least, carry over to the strongly nonlinear
regime.

6 What Determines the Strength of Bars
and Their Slow-Down Rate?

I have shown in the previous sections that the halo can take angular momentum
from the bar, thus making it stronger and slower. However, for this effect to be
important, the amount of angular momentum exchanged must be considerable.
For the latter to happen the halo must

• be sufficiently massive in the regions containing the principal resonances.
• not be too hot, i.e. not have too high velocity dispersion. Indeed, hot haloes

can not absorb much angular momentum, even if they are massive (e.g. [4]).

Thus the length and the slow-down rate of bars are naturally limited by the
mass and velocity distribution of the halo. Examples of this can be found in [4].

7 Trends and Correlations

In [4] I found trends and correlations between the angular momentum absorbed
by the spheroid (i.e. the halo plus, whenever existent, the bulge), the bar strength
and the bar pattern speed. They are based on a set of simulations analogous to
those described in the previous sections. Such plots are given also in Fig. 4, based
on a somewhat larger sample of simulations. About three quarters of them were
run with the Marseille GRAPE-5 systems, and roughly one quarter was run on
PCs using Dehnen’s treecode ([14], [15]). Each point represents one simulation
and the trends are the same as those found in [4]. The upper panels show the
results for the whole sample, the middle panels contain only simulations where
the halo has a small core radius (γ < 2), Mh = 5 and does not extended beyond
15 disc scale-lengths, and the lower ones contain only simulations where the halo
has a large core radius (γ > 2), Mh = 5 and again does not extended beyond 15
disc scale-lengths.

The right panel shows that there is a correlation between the angular mo-
mentum of the spheroid and the bar strength. This correlation holds also when I
restrict myself to simulations with large (or small) core radii as seen in the second
and third row. A trend also exists between the spheroid angular momentum and
the bar pattern speed. In this case, however, simulations with large core radii be-
have differently from those with small radii. Indeed, for simulations with a small
core radius (i.e. centrally concentrated halos) I find a very strong correlation
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Fig. 4. Relations between the bar strength and the pattern speed (left panels), the
spheroid angular momentum and the pattern speed (middle panels) and the spheroid
angular momentum and the bar strength (right panels), at times t = 800. The spheroid
angular momentum is normalised by the initial disc angular momentum (Lz,d). The
simulations under consideration in each panel are marked with a filled circle and the
rest by a dot. The upper row includes all simulations, the middle and the lower ones
subsamples, as described in the text. In the middle panel simulations with a bulge are
marked with a ⊕, simulations with γ = 0.01 with a filled star, simulations with 2 > γ ≥
1 with a filled triangle and simulations with Qinit ≥ 2 with an open square. In the
lower panel simulations with Qinit ≥ 1.4 and z0 ≥ 0.2 are marked with an ⊕.

between the spheroid angular momentum and the pattern speed, particularly if
I restrict myself to one value of γ. In such simulations the angular momentum is
exchanged primarily between the bar region and the spheroid, thus accounting
for the very tight correlation. Simulations with large cores behave differently
(lower middle panel). They show only a rough trend, except for simulations with
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a hot disc, which show a tight correlation. This is easily explained in the sce-
nario of evolution via angular momentum exchange. The outer parts of hot discs
absorb only little angular momentum, so that the exchange is basically between
the bar region and the spheroid, thus accounting for the tight correlation. On
the other hand, if the outer disc is cold, then it can participate more actively in
the exchange. Since the angular momentum absorbed by the spheroid (plotted
in Fig. 4) is not the total angular momentum exchanged, but only a fraction of
it, I find only a trend.

8 Comparing the Morphology of N -Body
and of Real Bars

The correlations discussed in section 7 show clearly that models that have ex-
changed more angular momentum have stronger bars than models that have
exchanged little. By examining the results of the individual simulations, I could
see that, in cases where large amounts of angular momentum have been ex-
changed, the bars are long, relatively thin and have rectangular-like isodensities,
particularly in their outer parts. A typical example of such a case is given in
the left panels of Fig. 5 (see also [6]). Note also the existence of ansae at the
ends of the bar, a feature sometimes observed in early type barred galaxies. On
the other hand, models that have exchanged little angular momentum have less
homogeneous properties. For example they can have either ovals, or short bars.
Typical examples of such cases are given in the middle and right panels of Fig. 5,
respectively. The model in the left panel has exchanged about 15 percent of the
disc angular momentum by the time shown in Fig. 5, while the other two models
only of the order of a percent.

The edge-on morphology also is strongly influenced by the amount of angu-
lar momentum exchanged. The strong bar, when seen edge-on, displays a clear
peanut morphology, as often observed. On the other hand the oval has a boxy
edge-on appearance, while the small bar has not changed significantly the edge-
on morphology of the galaxy.

The difference in bar strength is also illustrated in the lower panels of Fig. 5,
which show the relative Fourier components of the density for m = 2, 4, 6 and
8 for the three simulations. The simulation that exchanged a lot of angular
momentum has a very strong m = 2 component, with a secondary maximum
roughly at the position of the ansae. The remaining components, even the m = 6
and 8 ones, are also important. The location of their maximum moves outwards
with increasing m. The oval has much lower Fourier components, and only the
m = 2 stands out from the noise. For small radii all components are nearly zero,
which means that the oval must be nearly axisymmetric in its innermost parts.
On the other hand, the m = 2 amplitude drops slowly with radius in the outer
parts, thus extending to large radii. The small bar has Fourier components which
drop rapidly with radius, i.e. they are noticeable only in the central region, as
expected since the bar is confined there. Only the m = 2 and 4 components
stand out from the noise.
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Fig. 5. Comparison of a simulation forming a strong bar (left panels), one forming an
oval (middle panels) and one forming a short bar (right panels). The layout is as for
Fig. 1.

The radial rearrangement of the disc material due to the bar can be inferred
by comparing the initial with the current circular velocity curves, given in the
first and second rows of panels. The strong bar has entailed a substantial radial
rearrangement, the final disc mass distribution being considerably more centrally
concentrated than the initial one. On the other hand, in the other two simula-
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Fig. 6. The upper panels show the run of the ellipticity 1 - b/a as a function of the
semi-major axis a. The lower panels show the run of the shape parameter c, also as a
function of a. The left panels corresponds to a model with a strong bar, the middle ones
to model with an oval and the right ones to a model with a short bar. To improve the
signal-to-noise ratio for the model with the oval I took an average over a time interval,
namely [620-700]. The dispersion during that time is indicated by the error bars. The
times are given in the upper right corner of the upper panels.

tions, and particularly in the one producing the oval, there is very little radial
rearrangement of the disc material. Since there is also hardly any radial rear-
rangement of the halo material ([6], [3], [35]), this means that the disc-to-halo
mass ratio changes most in the simulations where more angular momentum has
been exchanged.

Quantitative comparison of the bar form of the three models is given in Fig. 6.
The values of the bar semi-major and semi-minor axes (a and b, respectively)
and of the shape parameter (c) were obtained by fitting generalised ellipses of
the form

(|x|/a)c + (|y|/b)c = 1, (6)

to the bar isodensities. The shape parameter c is 2 for ellipses, larger than 2 for
rectangular-like generalised ellipses, and smaller than 2 for diamond-like ones.
From this figure one can note that both the strong and the short bar are thin,
and in general see how their axial ratios vary with the semi-major axis. The
shape parameter is given in the lower panels. We see that both the strong and
the short bar have rectangular-like isodensities in the outer regions of the bar,
while the oval has a shape very close to elliptical. In fact the strong bar has axial
ratios and shapes very similar to those found in [7] by applying the same type
of analysis to a sample of early type barred galaxies.

Plotting the run of the density along the bar major axis ([6]) I find for the
strong bar a profile which is rather flat within the bar region, similar to what
was found in [16] for early type bars.
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It is thus clear that the amount of angular momentum exchanged influences
the morphology of the bar. In my first example, where a lot of angular momentum
was transferred from the bar to the outer halo (mainly), the result is a long,
strong bar, with some rectangular-like isophotes and ansae at its ends. The
examples where little angular momentum was exchanged have a very different
morphology, one forming an oval and the other a short bar. What determines
which one of the two it will be? In the examples shown here, and in a rather large
sample of similar cases, the oval was formed in an initially hot disc, while the
short bar grew in a hot halo. The existing theoretical framework, however, gives
no predictions on this point and work is in progress to elucidate this further.

9 Summary

In this paper I reviewed evidence that shows that angular momentum is ex-
changed between the bar region in the one hand, and the outer disc and the
spheroid on the other. This exchange determines the slow-down rate of the bar,
as well as its strength and its overall morphology.
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Abstract. The formation of elliptical galaxies as a result of the merging of spiral galax-
ies is discussed. We analyse a large set of numerical N-Body merger simulations which
show that major mergers can in principle explain the observed isophotal fine structure
of ellipticals and its correlation with kinematical properties. Equal-mass mergers lead
to boxy, slowly rotating systems, unequal-mass mergers produce fast rotating and disky
ellipticals. However, several problems remain. Anisotropic equal mass mergers appear
under certain projections disky which is not observed. The intrinsic ellipticities of rem-
nants are often larger than observed. Finally, although unequal-mass mergers produce
fast rotating ellipticals, the remnants are in general more anisotropic than expected
from observations. Additional processes seem to play an important role which are not
included in dissipationless mergers. They might provide interesting new information
on the structure and gas content of the progenitors of early-type galaxies.

1 Introduction

Giant elliptical galaxies are believed to be very old stellar systems that formed
by a major merger event preferentially very early at a high redshift of more than
two ([59], [61]). The merger triggered an intensive star-formation phase which
turned most of the gas of the progenitors into stars. Some fraction of the gas was
heated to temperatures of order the virial temperature, producing X-ray coronae
which are still visible today. The stellar disks of the progenitors were destroyed
as a result of the strong tidal forces during the merger, leading to kinematically
hot, spheroidal stellar remnants. Subsequently, the systems experienced very
little accretion and merging with negligible star formation [22]. This scenario is
supported by many observations which indicate that ellipticals contain stellar
populations that are compatible with purely passive evolution ([21], [1], [27],
[65]). or with models of an exponentially, fast decreasing star formation rate
[66].

An alternative scenario which is based on hierarchical theories of galaxy for-
mation predicts that massive galaxies are assembled relatively late in many gen-
erations of mergers through multiple mergers of small subunits, with additional
smooth accretion of gas ([38], [39]). In this case, ellipticals might form either if
the multiple subunits are already preferentially stellar or if star formation was
very efficient during the protogalactic collapse phase [42].

The idea that ellipticals form from major mergers of massive disk galaxies has
been originally proposed by Toomre & Toomre [61]. Their “merger hypothesis“
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has been explored in details by many authors, using numerical simulations. Ger-
hard [31], Negroponte & White [52], Barnes [2] and Hernquist [33] performed the
first fully self-consistent merger models of two equal-mass stellar disks embed-
ded in dark matter halos. The remnants are slowly rotating, pressure supported
and anisotropic. They generally follow an r1/4 surface density profile for radii
r ≥ 0.5re, where re is the effective radius. However it turns out that due to
phase space limitations [23], an additional massive central bulge component is
required [35], to fit the observed de Vaucouleurs profile [19] also in the inner
regions. All simulations demonstrated consistently that the global properties of
equal mass merger remnants resemble those of ordinary slowly rotating massive
elliptical galaxies.

More recently it has become clear that ellipticals have quite a variety of
fine structures with peculiar kinematical properties which, in contrast to their
universal global properties, can give a more detailed insight into their forma-
tion history. It is interesting to investigate whether the merging hypothesis can
explain these observations and, if yes, whether they provide more information
on the validity of this scenario, the orbital parameters of the mergers and the
structure and gas content of the progenitors from which the ellipticals formed.

Elliptical galaxies can be subdivided into two major groups with respect
to their structural properties ([9], [7], [8], [41]). Faint ellipticals are isotropic
rotators with small minor axis rotation and disky deviations of their isophotal
shapes from perfect ellipses. Their isophotes are peaked in the rotational plane
and a Fourier analyses of the isophotal deviation from a perfect ellipse leads to
a positive value of the fourth order coefficient a4. These galaxies might contain
secondary, faint disk components which contribute up to 30% to the total light in
the galaxy, indicating disk-to-bulge ratios that overlap with those of S0-galaxies
([55], [58]). Disky ellipticals have power-law inner density profiles ([43], [28])
and show little or no radio and X-ray emission [10]. Most massive ellipticals
have boxy isophotes, with negative values of a4. They also show flat cores ([43],
[28] Faber et al. 1997) and their kinematics is more complex than that of disky
ellipticals. Boxy ellipticals rotate slowly, are supported by velocity anisotropy
and have a large amount of minor axis rotation. Like the secondary disks of
disky ellipticals, the boxy systems occasionally reveal kinematically decoupled
core components, that most likely formed from gas that dissipated its orbital
energy during the merger, accumulated in the center and subsequently turned
into stars ([29], [57], [8]). The cores inhibit flattened rapidly rotating disk- or
torus-like stellar structures that dominate the light in the central few hundred
parsecs ([56], [45]), but they contribute only a few percent to the total light of
the galaxy. The fact that the stars are metal-enhanced confirms that gas infall
and subsequently violent star formation, coupled with metal-enrichment must
have played an important role in the centers of merger remnants ([11], [25], [12],
[26]). Boxy ellipticals show strong radio emission and high X-ray luminosities,
resulting from emission from hot gaseous halos [16] that probably formed from
gas heating during the merger. These hot gaseous bubbles are however absent
in disky ellipticals. The distinct physical properties of disky and boxy elliptical
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galaxies indicate that both types of ellipticals experienced different formation
histories.

In order to understand the origin of boxy and disky ellipticals the isophotal
shapes of the numerical merger remnants have been investigated in detail. It has
been shown that the same remnant can appear either disky or boxy when viewed
from different directions (Hernquist 1993b) with a trend towards boxy isophotes
([36], [58]). Barnes [4] and Bendo & Barnes [15] analysed a sample of disk-disk
mergers with a mass ratio of 3:1 and found that the remnants are flattened
and fast rotating in contrast to equal mass mergers. Naab et al. [47] studied
the photometrical and kinematical properties of a typical 1:1 and 3:1 merger
remnant in details and compared the results with observational data . They
found an excellent agreement and proposed that fast rotating disky elliptical
galaxies can originate from purely collisionless 3:1 mergers while slowly rotating,
pressure supported ellipticals form from equal mass mergers of disk galaxies.

Despite these encouraging results no systematic high-resolution survey of
mergers has yet been performed to explore the parameter space of initial condi-
tions and specify the variety of properties of merger remnants that could arise.
Recently, Naab & Burkert [50] completed a large number of 112 merger simula-
tions of disk galaxies adopting a statistically unbiased sample of orbital initial
conditions with mass ratios η of 1:1, 2:1, 3:1, and 4:1. This large sample al-
lows a much more thorough investigation of the statistical properties of merger
remnants in comparison with observed disky and boxy ellipticals.

2 The Merger Models

Cosmological simulations currently are not sophisticated enough to predict ini-
tial conditions of major spiral mergers. Some insight can however be gained
by investigating the typical conditions under which dark matter halos merge in
standard cold dark matter models. Such a detailed analysis was done by Khoch-
far, Burkert & White [40]. The first encounter is in most cases a parabolic orbit
with an impact parameter of order the scale radius of the more massive dark
halo, with random orientation of the net spin axes of the progenitors. Unequal
mass mergers with mass ratios η of 3:1 to 4:1 are as likely as equal-mass mergers
with η = 1 : 1 − 2 : 1. The cold dark matter simulations however do not provide
information on the internal structure and gas content of the merging spirals. In
fact, simulations of hierarchical structure formation including gas lead to disk
galaxies which do not fit the zero point of the Tully-Fisher relation with disk
scale radii that are up to a factor of 10 smaller than observed [51]. Unless these
problems are solved we cannot study the subsequent merging of disk galax-
ies self-consistently, including the large-scale evolution of the Universe. In the
meantime, the best strategy is to construct plausible equilibrium models of disk
galaxies and investigate their merging in isolation.

Equilibrium spirals were generated using the method described by Hernquist
[34]. The following units are adopted: gravitational constant G=1, exponential
scale length of the larger disk h = 1 and mass of the larger disk Md = 1. For a
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typical spiral like the Milky Way these units correspond to Md = 5.6× 1010M�,
h=3.5 kpc and a unit time of 1.3×107 yrs. Each galaxy consists of an exponential
disk, a spherical, non-rotating bulge with mass Mb = 1/3 and a Hernquist density
profile [32] with a scale length rb = 0.2. The stellar system is embedded in a
spherical pseudo-isothermal halo with a mass Md = 5.8, cut-off radius rc = 10
and core radius γ = 1.

The mass ratios η of the progenitor disks were varied between η = 1 and η =
4. For equal-mass mergers (η = 1) in total 400000 particles were adopted with
each galaxy consisting of 20000 bulge particles, 60000 disk particles, and 120000
halo particles. Twice as many halo particles than disk particles are necessary in
order to reduce heating and instability effects in the disk components [47]. For
the mergers with η = 2, 3, 4 the parameters for the more massive galaxy were as
described above. The low-mass companion however contained a fraction of 1/η
less mass and number of particles in each component, with a disk scale length
of h =

√
1/η, as expected from the Tully-Fisher relation [54].

The N-body simulations for the equal-mass mergers were performed by direct
summation of the forces using the special purpose hardware GRAPE6 [44]. The
mergers with mass ratios η = 2, 3, 4 were followed using the newly developed
treecode WINE [64] in combination with the GRAPE5 [37] hardware. WINE
uses a binary tree in combination with the refined multipole acceptance criterion
proposed by Warren & Salmon (1996). This criterion enables the user to control
the absolute force error which is introduced by the tree construction. We chose
a value of 0.001 which guarantees that the error resulting from the tree is of
order the intrinsic force error of the GRAPE5 hardware which is 0.1%. For all
simulations we used a gravitational softening of ε = 0.05 and a fixed leap-frog
integration time step of ∆t = 0.04. For the equal-mass mergers simulated with
direct summation on GRAPE6 the total energy is conserved. The treecode in
combination with GRAPE5 conserves the total energy up to 0.5%.

For all mergers, the galaxies approached each other on parabolic orbits with
an initial separation of rsep = 30 length units and a pericenter distance of rp = 2
length units. Free parameters are the inclinations of the two disks relative to the
orbital plane and the arguments of pericenter. In selecting unbiased initial pa-
rameters for the disk inclinations we followed the procedure described by Barnes
[2]. To determine the spin vector of each disk we define four different orientations
pointing to every vertex of a regular tetrahedron. These parameters result in 16
initial configurations for equal mass mergers and 16 more for each mass ratio
η = 2, 3, 4 if the initial orientations are interchanged. In total we simulated 112
mergers.

In all simulations the merger remnants were allowed to settle into equilibrium
approximately 8 to 10 dynamical times after the merger was complete. Then their
equilibrium state was analysed.
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3 Photometric and Kinematical Properties
of the Remnants

To compare our simulated merger remnants with observations we analysed the
remnants with respect to observed global photometric and kinematical properties
of giant elliptical galaxies, e.g. surface density profiles, isophotal deviation from
perfect ellipses, velocity dispersion, and major- and minor-axis rotation. Defining
characteristic values for each projected remnant we followed as closely as possible
the analysis described by Bender et al. [8].

3.1 Isophotal Shape

An artificial image of the remnant was created by binning the central 10 length
units into 128 × 128 pixels. This picture was smoothed with a Gaussian filter of
standard deviation 1.5 pixels. The isophotes and their deviations from perfect
ellipses were then determined using a data reduction package kindly provided by
Ralf Bender. Following the definition of Bender et al. [8] for the global properties
of observed giant elliptical galaxies, we determined for every projection the effec-
tive a4-coefficient a4eff as the mean value of a4 between 0.25re and 1.0re, with
re being the projected spherical half-light radius. Like for observed ellipticals we
find two types of remnants. Disky systems show a positive characteristic peak
of a4 roughly at 0.5re. In boxy ellipticals, the a4 coefficient might be positive in
the innermost regions. It decreases however systematically outwards with a mean
value that is negative. The characteristic ellipticity εeff for each projection was
defined as the isophotal ellipticity at 1.5re. To investigate projection effects we
determined for each simulation a4eff and εeff for 500 random projections of the
remnant. These values were used to calculate the two-dimensional probability
density function for a given simulated remnant to be “observed” in the a4eff -εeff
plane.

Figure 1 shows the ellipticities and a4-coefficients of mergers with η = 1, 2, 3,
and 4. The contours indicate the areas of 50% (dashed line), 70% (thin line)
and 90% (thick line) probability to detect a merger remnant with the given
properties. Observed data points from Bender et al. [11] or [13] are over-plotted.
Filled boxes are observed boxy ellipticals with a4eff ≤ 0 while open diamonds
indicate observed disky ellipticals with a4eff > 0. The error bar in determining a4
from the simulations is shown in the upper left corner and was estimated applying
the statistical bootstrapping method [36]. Ellipticity errors are in general too
small to be visible.

We find that the isophotal shapes of ellipticals and their ellipticities are
affected by the initial mass ratio of the merger and by projection effects. The
area covered by 1:1 remnants with negative a4eff is in very good agreement with
the observed data for boxy elliptical galaxies. In particular the observed trend
for more boxy galaxies to have higher ellipticities is reproduced. However we also
find configurations of 1:1 mergers which under certain projection angles appear
disky with 0 ≥ a4eff ≤ 1. In addition, note that the remnants with a4eff around
zero can have higher ellipticities than observed.
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Fig. 1. Ellipticities versus fourth-order Fourier coefficient of the isophotal shape devi-
ations is shown for simulations with different initial mass ratios. The contours indicate
the 50% (dotted line), 70% (thin solid line) and the 90% (thick solid line) probability to
find a merger remnant in the enclosed area. Black squares indicate values for observed
boxy ellipticals, open diamonds show observed disky ellipticals.

The distribution function of isophotal shapes for 1:1 merger remnants peaks
at a4eff ≈ −0.5% (dashed curve in Fig. 2). It declines rapidly for more negative
values and has a broad wing towards positive a4eff values. Almost half of the
projected remnants are disky. In contrast, remnants of mergers with higher mass
ratios shift in the direction of positive a4eff . 2:1 remnants peak at a4eff ≈ 0.
Now, 75% of the projected remnants show disky isophotes. For these cases,
the observed trend of more disky ellipticals to be more flattened is also clearly
visible in Fig. 1. 3:1 and 4:1 mergers peak at a4eff ≈ 1. Their fraction of boxy
projections is only 11% and 7%, respectively. The very high positive values of
a4eff ≥ 4% observed in some ellipticals cannot be reproduced. One might argue
that these objects formed from mergers with even higher mass ratios of η ≥ 5 : 1.
However, in this case, test simulations show that the merger remnants do not
look like typical ellipticals anymore with characteristic de Vaucouleurs profiles as
the more massive disk is not destroyed. Their surface brightness profiles instead
remain exponential.
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Fig. 2. Normalized histograms of the shape parameter a4eff for mergers with various
mass ratios.

In summary, there is a clear trend for unequal-mass mergers to produce more
disky remnants. Responsible for the disky appearance of the 3:1 and 4:1 remnants
is the distribution of the particles of the massive disk [3]. The particles originating
from the small progenitor accumulate in a torus-like structure with peanut-
shaped or boxy isophotes while the luminous material of the larger progenitor
still keeps its disk-like appearance. In combination, the contribution from the
larger progenitor – since it is three to four times more massive – dominates the
overall appearance of the remnant. This result holds for all 3:1 and 4:1 merger
remnants. For equal mass mergers however both disks are destroyed efficiently
during the merger. No dominant disk-like structure remains after the merger
and the system looses the information about the initial configuration.

3.2 Kinematics

The central velocity dispersion σ0 of every remnant is determined as the aver-
age projected velocity dispersion of the stars inside a projected galactocentric
radius of 0.2re. The characteristic rotational velocity vmaj along the major axis
is defined as the projected rotational velocity determined around 1.5re. Like for
the isophotal shape we constructed probability density plots for the kinemati-
cal properties of the simulated remnants and compared them with observational
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Fig. 3. Rotational velocity over velocity dispersion versus characteristic ellipticity for
mergers with various mass ratios. Values for observed ellipticals are overplotted. The
dashed line shows the theoretically predicted correlation for an oblate isotropic rotator.

data from elliptical galaxies. Figure 3 shows the distribution function in the
(vmaj/σ0)-εeff plane.

The region of slowly rotating boxy ellipticals (filled squares) is almost com-
pletely covered by the data of 1:1 mergers. Unequal-mass merger remnants are
clearly fast rotating. They can be associated with disky ellipticals. Although the
simulated remnants are in good agreement with observations there is again the
trend for the ellipticities to be higher than observed, especially when the system
is seen edge-on.

The anisotropy parameter (vmaj/σ0)∗ is defined as the ratio of the observed
value of (vmaj/σ0) and the theoretical value for an isotropic oblate rotator
(v/σ)theo =

√
εobs/(1 − εobs) with the observed ellipticity εobs [17]. This param-

eter is frequently used by observers to test whether a given galaxy is flattened by
rotation ((vmaj/σ0)∗ ≥ 0.7) or by velocity anisotropy ((vmaj/σ0)∗ < 0.7) ([25],
[7], [53], [58]). Figure 4 shows the normalized histograms for the (vmaj/σ0)∗

values of the simulated remnants. 1:1 remnants peak around (vmaj/σ0)∗ ≈ 0.3
with a more prominent tail towards lower values. They are consistent with be-
ing supported by anisotropic velocity dispersions. As these systems also have
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Fig. 4. Normalized histograms of (vmaj/σ0)∗ for 1:1 (dashed line), 2:1 (dotted line),
3:1 (thick line) and 4:1 (thin line) mergers.

preferentially negative a4-values they agree with observations of boxy ellipti-
cals (Fig. 5). Unequal mass mergers peak at (vmaj/σ0)∗ ≈ 0.7, as expected for
oblate isotropic rotators. Since especially the 3:1 and 4:1 remnants also have
predominantly disky isophotes they cover the area populated by observed disky
ellipticals in the log(vmaj/σ0)∗ - a4eff diagram which is shown in Fig. 5.

We also investigated the minor-axis kinematics of the simulated remnants by
determining the rotation velocity along the minor axis at 0.5reff . The amount of

minor axis rotation was characterized by (vmin/
√

v2
maj + v2

min) [18]. Minor axis
rotation in elliptical galaxies, in addition to isophotal twist, has been suggested
as a sign for a triaxial shape of the main body of elliptical galaxies ([62], [30]). In
general, 1:1 mergers show a significant amount of minor-axis rotation, whereas
3:1 and 4:1 remnants have only small minor axis rotation (for details see [50]).

4 Conclusions

The analysis of a large set of mergers with different mass ratios and orbital
geometries shows that their properties are in general in good agreement with
the observational data for elliptical galaxies.

Only equal mass mergers can produce boxy, anisotropic and slowly rotating
remnants with a large amount of minor axis rotation. However, in the more un-
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Fig. 5. Anisotropy parameter versus isophotal shape for mergers with various mass
ratios. Values for observed ellipticals are overplotted.

likely case that the initial spins of the progenitor disks are aligned, the remnants
appear isotropic and disky or boxy depending on the orientation. In contrast,
3:1 and 4:1 mergers form a more homogeneous group of remnants. They have
preferentially disky isophotes, are always fast rotating and show small minor
axis rotation independent of the assumed projection. 2:1 mergers have proper-
ties intermediate between boxy or disky ellipticals, depending on the projection
and the orbital geometry of the merger.

There still exist problems which are not solved up to now. Certain projections
of 1:1 mergers lead to anisotropic, disky remnants which are not observed. Edge-
on projections of merger remnants often show very high ellipticities ε > 0.6
which are larger than observed. Finally, some 2:1 to 4:1 remnants are more
anisotropic than expected from their rotation. Their values of (v/σ)∗ are smaller
and their ellipticities are larger than observed. A problem arises especially for
very low luminosity giant ellipticals which are characterized by exceptionally
high rotational velocities in the outer regions that cannot be reproduced [24].
A detailed analyses of the intrinsic kinematics of disky, fast rotating merger
unequal-mass remnants which are called isotropic due to their high (v/σ)∗ ≈ 0.7
demonstrates that in most cases the velocity dispersion tensor is as anisotropic
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as for equal-mass, boxy and anisotropic mergers with (v/σ)∗ = 0.1 [20]. The
anisotropy parameter therefore is not necessarily a good indicator of anisotropy.
It rather measures the amount of rotation in the systems.

The present simulations were purely dissipationless, taking into account only
the stellar and dark matter components. The importance of gas in determining
the structure of merger remnants is not clear up to now. Kormendy & Bender
[41] proposed a revised Hubble sequence with disky ellipticals representing the
missing link between late type systems and boxy ellipticals. They noted that
gas infall into the equatorial plane with subsequent star formation could explain
the origin of diskyness. Scorza & Bender [58] demonstrated that ellipticals with
embedded disks would indeed appear disky when seen edge-on and boxy oth-
erwise. Although this scenario appears attractive, it cannot explain why X-ray
halos are found only in boxy ellipticals. As the detection of hot gas around galax-
ies should be independent of their orientation, the isophotal shapes of ellipticals
would not correlate with their X-ray emission, if these shapes are merely a result
of projection effects.

Our simulations indicate that it is preferentially the initial mass ratio which
determines the isophotal shapes of merger remnants. Still, gas could have played
an important role in affecting the final structure and stellar population of ellipti-
cals ([5], [6], [46]), not only in their central regions and might solve the problem
of dissipationless mergers. Naab & Burkert [48] have shown that extended gas
disks can form as a result of a gas rich unequal mass mergers (see also [4]). Naab
& Burkert [49] investigated line-of-sight velocity distributions of dissipationless
merger remnants and found a velocity profile asymmetry that is opposite to the
observations. They concluded that this disagreement can be solved if ellipticals
would indeed contain a second disk-like substructure that most likely formed
through gas accretion. The situation is however not completely clear, as another
study by Bendo & Barnes [15] found a good agreement of the observed asym-
metries for some cases. More simulations, including gas and star formation will
be required to understand the role of gas in mergers and to answer the question
of how early-type galaxies formed.
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Abstract. The time evolution of a computer model for an isolated disk representing
a flat galaxy is studied. The method of direct integration of Newton’s equations of
motion of particles–“stars” is applied. Using the modern 128-processor SGI Origin
2000 supercomputer in Israel, we make long simulation runs with a large number of
particles, N = 100 000. One of the goals of the simulation is to test the validities of the
modified Safronov–Toomre criterion for stability of arbitrary but not only axisymmetric
Jeans-type gravity disturbances (e.g., those produced by a spontaneous perturbation
and/or a companion system) in a self-gravitating, thin, and almost collisionless stellar
disk. We are also interested in how model particles diffuse in chaotic (residual) velocity
space. This is of considerable interest in the nonlinear theory of stellar disks.

1 Introduction

One can learn much about the properties of stellar systems of galaxies experi-
mentally by computer simulation of N -body systems. In this work, we analyze
the evolution and stability of structures in an N -body model of an isolated and
rotating stellar disk representing a flat galaxy by integration of Newton’s equa-
tions of motion of N identical particles. Use of the 128-processor SGI Origin
2000 computer, enabled us to make long simulation runs using a large num-
ber of particles, N = 100 000, in the direct summation code and thus simulate
phenomena not previously studied numerically. The essential difference between
the present and previous simulations is the comparison between the results of
N -body experiments and the kinetic stability theory as developed in [1–8].

2 N -Body Simulations

Different methods are currently employed to simulate the evolution of collision-
less point-mass systems of flat galaxies by N -body experiments. See, e.g., [9] as
a review. For instance, one can use an algorithm for a simulation code, which
is an analog of plasma particle-mesh (PM) codes. It is believed that simulating
many billions of stars in actual galaxies by using only several ten or hundred
thousands particles in PM experiments will be enough to capture the essential
physics, which includes wave-like collective motions. In other fields, such as the
simulation of spiral structures, PM codes may be used with moderate success.
This is because these fine-scale <∼ 1 kpc structures can basically be governed
by collisionless processes. By increasing the number of cells to reproduce the
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microstructures, one reduces the average number of particles per cell, and thus
increases the undesirable effect of particle encounters. The problem is serious
because there are regions in the phase space which are important to the problem
but in which the distribution function is small. In contrast, our model is based on
the direct numerical integration of the equations of motion in three dimensions
for N mutually gravitating particles.

The numerical procedure is used first to seek stationary solutions to the
Boltzmann equation in the self-consistent field approximation, and then to de-
termine the stability of those solutions to small gravity perturbations. At the
start of the N -body integration, our similation initilizes the particles on a set
of 100 concentric circular rings with a circular velocity V rot of galactic rotation
in the equatorial plane; the system is isolated. Then the position of each parti-
cle was slightly perturbed by applying a pseudorandom number generator. The
Maxwellian-distributed chaotic (residual) velocities v were added to the initial
circular velocities V rot, and |v| � |V rot|. The acceleration of the ith particle is

ai =
N∑

j �=i

(rj − ri)
(r2

ij + r2
cut)3/2 . (1)

In (1), rcut is the so-called cutoff radius. This “softening” of the gravitational
potential is a device used in N -body simulations to avoid numerical difficulties
at very close but rare encounters. Units are chosen such that the mass of each
particle is 105M� so that the total mass of the disk galaxy is 1010M�. The initial
radius of the disk is 10 kpc. When N is large, the main computational problem
is the large number, ∝ N(N − 1), of operations required to determine ai.

We consider a rotating model disk of stars of thickness h with a surface
mass density variation given by σ0(r) = σ(0)

√
1 − r2/R2, where σ(0) is the

central surface density and R is the radius of the initial disk. As a solution
of a time-independent collisionless Boltzmann equation, to ensure initial equi-
librium, the angular velocity to balance the zero-velocity dispersion disk, Ω0 =
π
√

Gσ(0)/2R, was adopted [10]. For this uniformly rotating disk, the Maxwellian-
distributed chaotic velocities with radial cr and azimuthal cϕ dispersions in the
plane z = 0, according to the Safronov–Toomre criterion [11], cT = 3.4Gσ0/κ =
0.341Ω0

√
R2 − r2, may be added to the initial circular velocities Vrot = rΩ0.

Here κ is the epicyclic frequency. According to [1–8, 12–14], it is crucial to re-
alize that such a spatially inhomogeneous disk is Jeans-stable only against the
axisymmetric (radial) gravity perturbations but unstable against the nonaxisym-
metric (spiral) perturbations. The initial vertical velocity dispersion was chosen
cz = 0.15cr. Finally, the angular velocity Ω0 was replaced by [10]

Ω =
{

Ω2
0 +

1
rσ(r)

∂

∂r

[
σ(r)c2

r(r)
]}1/2

.

The sense of disk rotation was taken to be counterclockwise, the cutoff radius was
rcut = 0.004R, and the initial disk thickness was h = 0.006R, that is, h > rcut.

Slight corrections have been applied to the resultant velocities and coordi-
nates of the model stars so as to ensure the equilibrium between the centrifugal
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and gravitational forces, to preserve the position of the disk center of gravity at
the origin, and to include the weak effect of the finite thickness of the disk to
the gravitational potential. Thus, the initial model is very near the dynamical
equilibrium for all radii. A time t = 1 was taken to correspond to a single rev-
olution of the initial disk. In the experiment the simulation was performed up
to a time t = 10. It should be noted here that after about three rotations the
picture is practically stabilized and no significant changes in gross properties of
the model over this time are observed. Tests indicated that the results were in-
sensitive to changes in the number of particles in the range N = 10 000−100 000,
the cutoff parameter in the range rcut = (0.001− 0.01)R, the initial velocity dis-
persion in the range cr = (1 − 1.3)cT, and the initial disk thickness in the range
h = (0 − 0.08)R. We argue that structures observed in our N -body simulations
originate from the collective modes of oscillations — the classical Jeans-type
gravitational modes and firehose-type bending modes.

3 Results of Simulations

Figure 1 displays a series of snapshots from a simulation run. The figures include
only a face-on view of the simulation region. In accordance with the theoretical
explanation [1–8, 12–14], the effects of the Jeans instability of spontaneous non-
axisymmetric gravity perturbations appear quickly in the simulation. One can
see at first a strong multi-armed spiral structure. It is interesting to notice that
in a sample of 654 optical spiral galaxies [15], two-armed (grand design) galaxies
like M 51 are roughly a factor of six times rare than such many-armed galaxies
like NGC 613, an SBb galaxy in Sculptor.

At a later time, t > 0.5, the multi-armed structure disappears quickly and
is replaced by a weak spiral structure with three main spiral arms, m = 3,
or sometimes two, m = 2, or only one, m = 1, spiral arms. These spirals are
evidently gravitationally (Jeans-)unstable Lin–Shu density waves [16–19] and not
material arms, since test particles pass right through them. The m = 1 mode
shifts the point with highest density from the center of mass [9]. Interestingly,
in many disk-shaped galaxies, e.g., in the spiral galaxies M 101 and NGC 1300,

Fig. 1. The time evolution (face-on view) of an initially equilibrium, Toomre-stable
disk of N = 100 000 stars. The effects of the Jeans-type gravitational instability of
spontaneous spiral disturbances appear quickly in the simulation. A moderately tightly
wound, low–m spiral structure develops in the plane of the system at a time t ≈ 1.0.
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Fig. 2. The time evolution (edge-on view) for the simulation run shown in Fig. 1. At
t ≈ 0.4, the firehose-type bending instability fiercely develops in the central, almost
nonrotating parts of the system (and is switched off at t ≈ 2.0 [9, 21]).

there appears to be a deviation from rotational symmetry. In principle, such a
deviation may be due to the one arm Jeans instability. Also note that two unusual
single-arm galaxies turn up in [20] sample of some 54 differentially rotating spiral
galaxies. In one of them, namely NGC 4378, the spiral arm can be traced over
most 1

4 revolutions.
From the edge-on view pictured in Fig. 2, one can see that a fully three-

dimensional disk develops immediately at t ≈ 0.2. A straightforward estimate
shows that a mean height ∆ of the disk above the plane corresponds to the force
balance between the gravitational attraction in the plane and the “pressure”
due to the velocity dispersion cz (i.e., “temperature”) in the z-direction [9, 19].
Clearly, this pressure-supported (in the z-direction) three-dimensional structure
seen to form very rapidly on the time scale of a single vertical epicyclic oscillation,
< Ω−1, with rather sharp edges. After a time t ≈ 0.2 there is no change in the
edge-on structure until at t ≈ 0.4. It is noteworthy that at t ≈ 0.4, the firehose-
type bending instability rapidly develops in the central parts of the system (and
is switched off at t ≈ 2.0 [9, 21]). At later times, t > 2.0, no dramatic evolution
is observed in our simulations (see [9]). To emphasize, the bending instability
develops in the central, almost nonrotating region of the system under study [9].
New spectroscopic optical and H I observations constitute a strong case in favour
of this bar-buckling mechanism for the formation of boxy/peanut-shaped bulges
in spiral galaxies [22]. Apparently, the authors of [23–25] first found the firehose-
type bending instability as a precursor of galactic bulge formation in the central,
almost nonrotating regions of a warm in the plane N -body disk, which initially
developed planar bars.

At somewhat later times, t > 2.0, a “box-shaped” or sometimes “peanut-
shaped” bar structure is developed [9]. The simulations show that, soon after
a central bar develops in the equatorial plane, it buckles and settles with an
increased thickness and vertical velocity dispersion, appearing boxy-shaped when
seen end-on and peanut-shaped when seen side-on [9, 24, 25]. The projected
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Fig. 3. In Fig. 3a, we show the evolution of the surface density for a stellar disk
(×2M�/kpc2) shown in Fig. 1. In Fig. 3b, rotation curve Vrot (km/sec) (1), radial
velocity dispersion (km/sec) (2), Safronov–Toomre critical velocity dispersion (km/sec)
(3), and modified dispersion (km/sec) (4) at the time t = 2.5.

densities of this central bar resemble the bulge light distribution measured by the
COBE satellite in the Milky Way’s Galaxy [26]. Moreover, a significant fraction
of edge-on spiral galaxies, and therefore presumably of all spirals, show boxy or
peanut-shaped isophotes in the bulge region [22]. The firehose-type bar-buckling
instability is the currently favored mechanism for the formation of boxy/peanut-
shaped bulges in spiral galaxies.

Figure 3a shows the evolution of the azimuthally averaged surface density
σ0 as a function of radius. It can be seen that the mass density is redistributed
by the Jeans-unstable waves on the dynamical time scale, <∼ Ω−1; the surface
density of the quasi-steady state system at t > 1 falls off exponentially.

3.1 Modified Stability Criterion

To emphasize it again, even though the initial velocity dispersion is equal to
the Safronov–Toomre [11] stabilizing one cT, the model is still violently Jeans-
unstable. The reason for such a behaviour of a disk has been explained in [1–8].
See also [12–14, 27–30] for a discussion. Accordingly, the presence of the differ-
ential rotation (or shear) results in quite different dynamical properties of the
axisymmetric and nonaxisymmetric gravity perturbations. In differentially ro-
tating disks the azimuthal force resulting from azimuthal displacements is more
important in determining the stability than is the radial force resulting from ra-
dial displacements [28, 31]. In a nonuniformly rotating disk for nonaxisymmetric
perturbations the modified dispersion cM of a marginally Jeans-stable system is
larger than cT (although still of the order of cT), and is approximately

cM ≈ (2Ω/κ)cT. (2)

In disk-shaped galaxies, 2Ω/κ = 1.5 − 1.8. It is obvious that in differentially
rotating galaxies, disks manage to keep their local stability parameter close to
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the critical value, cr ≈ (2Ω/κ)cT ≈ 2cT or Toomre’s Q-stability parameter
Q ≡ cr/cT ≈ 2Ω/κ ≈ 2, respectively. In this case, once the entire differentially
rotating disk has been heated to values cr ≈ 2cT (or Q ≈ 2), no further spiral
waves can be sustained by virtue of the Jeans instability — unless some “cooling”
mechanism is available leading to Toomre’s Q-value under approximately 2 or
to the value of cr smaller than approximately 2cT, respectively (e.g., by the
dissipation in the gas and/or by the star formation in an interstellar medium [9]).

Thus, the Jeans-unstable perturbations can be stabilized by the chaotic veloc-
ity spread. The critical Safronov–Toomre [11] velocity dispersion should stabilize
only radial perturbations of the Jeans type. The differentially rotating and spa-
tially inhomogeneous disk is still unstable against spiral Jeans perturbations.
The modified stability criterion against arbitrary but not only axisymmetric
gravity perturbations is given by (2). The spiral arms in nonuniformly rotating
systems are a mechanism for angular momentum transfer [31].

We compare the radial velocity dispersion values cr predicted by the Safronov–
Toomre criterion cT and by the modified criterion (2) with values obtained in
the numerical experiment. Many investigators have remarked that the experi-
mental cr significantly exceeds cT. This effect is also apparent in Fig. 3b, which
represents the quasi-steady state for the computer experiment with a disk shown
in Fig. 1. On the other hand, the quantity cM calculated from (2) satisfactorily
fits the experimental cr (in the central, pressure-supported parts of the system
where Vrot

<∼ cr, both cT and cM fail to employ). Thus, the experiment yields a
radial velocity dispersion for the particles significantly greater than predicted by
the Safronov–Toomre criterion, but it is nearly equal to the modified dispersion.

3.2 Chaotic Velocity Diffusion

One of the important problems of stellar disks is the determination of the chaotic
velocity diffusion. Such a velocity diffusion can be caused by gravitational insta-
bilities of a disk. To compute the velocity diffusion we calculate the mean-square
spread in the planar chaotic velocity c2 as a function of time for different radii.

As is seen in Fig. 4, along with the growth of the oscillation amplitude (pla-
nar spiral density waves): (a) chaotic velocities increase, and eventually in the
disk a quasi-stationary distribution is established at times t

>∼ 1 so that the
Jeans stability sets in, and (b) during the first rotation the squared plane veloc-
ity dispersion of particles increases with time as roughly c2 ≡ c2

r + c2
ϕ ∝ t. The

results (a) and (b) are in good agreement with the predictions of weakly nonlin-
ear (quasilinear) kinetic theory as developed in [7, 8]. Interestingly, observations
already showed about the same law of “heating” (increase of the velocity dis-
persion of the young stellar population with age of stars t) in the Solar vicinity,
c2 ∝ t [32]. We conclude that both the quasilinear theory [7, 8] and the N -body
simulation presented here are able to account for the form of the age–velocity
dispersion law in the plane of the Galaxy.

In turn, there are numerous observations showing that there exists ongoing
dynamical relaxation on the time scale of < 10 rotation periods (< 2 × 109 yr)
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Fig. 4. The time evolution of the squared planar velocity dispersion c2 for different
radii r (×10 kpc). Initially, the dispersion increases with with time rapidly, c2 ∝ t.
Later in a quasi-steady state, t

>∼ 1, the dispersion grows only slightly.

in the collisionless disk of the Milky Way’s Galaxy [19, 32–34]. It was observed
that in the Solar neighborhood the velocity distribution function of stars with
an age t

>∼ 108 yr is close to a Schwarzschild distribution — a set of Gaussian
distributions along each coordinate in chaotic velocity space, i.e., close to equilib-
rium along each coordinate. Also, older stellar populations are observed to have
a higher velocity dispersion than younger ones. Thus, this dynamical relaxation
of the distribution of young stars which were born in the equilibrium disk of the
Galaxy results in a randomization of the velocity distribution and a monotonic
increase of the chaotic velocity dispersion. The latter indicates a significant irreg-
ular gravitational field in the Galactic disk [32–34]. The irregular field causes a
diffusion of stellar orbits in velocity [7] (and positional [8]) space. Various mech-
anisms for the relaxation have been proposed. In the present work, we suggest
the idea of the collective collisionless relaxation: planar Jeans-unstable gravity
perturbations affect effectively the averaged velocity distribution of young stars
in the equatorial plane (see [7, 8, 35, 36] for a discussion).
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Formation of the Halo Stellar Population
in Spiral and Elliptical Galaxies

Tetyana Nykytyuk

Main Astronomical Observatory of Academy of Sciences of Ukraine, 03680 Kyiv,
Zabolothnoho 27, Ukraine

Abstract. A scenario of galactic halo formation through mergers of fragments has
been considered. In the framework of the scenario sets of fragments have been obtained
from the observed halo metallicity distribution function of the Milky Way Galaxy and
others. Our results allow us to conclude that 1) in our Galaxy a halo field star formation
can be occured in the fragments evolved as closed system 2) the formation of the bulk
of halo field stars of M31 and NGC 5128 perhaps is not associated with the formation
of the halo globular clusters in these galaxies 3) in our Galaxy the formation of the
halo field stars could be associated with the halo globular cluster formation

1 Introduction

The oldest stellar systems carry information about the processes that took place
in galaxies during the early epoch of their formation. Studies of ages and metal-
licities of these systems allow us to put restrictions on the theoretical description
of processes of galaxy formation. Therefore the halo stellar population is good
test for models of protogalaxy formation.

Studying globular clusters of our Galaxy Searle and Zinn [18] have concluded
that the halo globular clusters were formed in fragments which have merged with
the main body on timescales of more than 1 Gyr. Our work is based on this
scenario. It is supposed that the halo stellar population represents a mixture
of stars that were formed in fragments originally evolved separately from the
main protogalactic cloud. Hence, there should be a set of fragments which will
reproduce the observed halo metallicity distribution of stars. The aim of this
work is to identify a set of fragments containing stars which when mixed give
rise to to the observed metallicity distribution of halo field stars and of halo
globular clusters.

2 The Model

Let the mass of fragments from which the halo is formed equal the sum of the
masses of the stellar population and of gas fallen onto the disk at the present
epoch. Each fragment is supposed to evolve as a closed system; mergers among
fragments are not taken into account. Star formation process in different frag-
ments can begin at different times. A fragment may evolve up to given astration
level s (s = 1−µ, µ - the fraction of gas in a fragment) before it falls on a proto-
galaxy. The stars formed up to this moment add to the halo stellar population
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and the gas falls onto the disk. Fragments can be captured by the protogalaxy
untill they begin to form an internal stellar population, i.e. only gas fragments
are captured. The contribution of elements, synthesized by a stellar population
that formed in one fragment, to interstellar medium depends on 1) synthesis of
elements by stars of various masses 2) the number of stars formed in a given in-
terval of stellar masses i.e. on the initial mass function. The initial mass function
in a mass range from m up to m + dm is

N(m) = φ0m
−Adm, (1)

where φ0 is the normalization coefficient determined from the condition

φ0

n∑
j=1

m−A+1
j ∆m = 1M�. (2)

It is taken that the initial mass function is described by the Salpeter law with
A=2.35 [15]. The upper and lower mass limits of formed stars are taken to equal
mU = 120M� and ML = 0.1M� accordingly. The mass of matter which has
been ejected by the stellar population at the moment t is

Qm(t) =
∫ t

0

∫ mU

mL

Q̇(m, τ)φ0m
−Admdτ, (3)

where Q̇(m, τ) is rate of mass loss by a star with mass m and lifetime τ . The mass
of a synthesized element i ejected by all stars of a population at the moment t:

Qi(t) =
∫ t

0

∫ mU

mL

Q̇(m, τ)(Zi(m, τ) − Zi(0))φ0m
−Admdτ, (4)

where Zi(0) is abundance of element i in gas from which the stars were formed,
Zi(m, τ) is abundance of element i in matter ejected by stars with mass m and
lifetime τ [2].

We assume that each fragment evolves as a closed system and that its evo-
lution is considered within the framework of simple model of chemical evolution
of galaxies. Star formation process in a fragment is considered as sequence of
bursts with a population of stars is formed during each burst. The mass of gas
mg, the mass of element i mi and the mass converted into stellar remains ms at
the start of the star formation burst tbj

:

mg(tbj
) = mg(tbj−1) − mbj−1 −

j−1∑
k=1

mbk
[Qm(τj,k) − Qm(τj−1,k)] (5)
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mi(tbj
) = mi(tbj−1) − mbj−1zi(tbj−1) −

−
j−1∑
k=1

mbk
[Qm(τj,k) − Qm(τj−1,k)]zi(tbk

) +

+
j−1∑
k=1

mbk
[Qi(τj,k) − Qi(τj−1,k)] (6)

ms(tbj ) = ms(tbj−1) + mbj−1 −
j−1∑
k=1

mbk
[Qm(τj,k) − Qm(τj−1,k)] (7)

where

τj,k = tbj − tbk

τj−1,k = tbj−1 − tbk
,

where mbj
is the mass of a star formation burst j , zi(tbj

) is the abundance of
element i at the moment tbj , τj,k is the age of burst k at the moment tbj [2].
The second part on the right hand side of equation 6 takes into account a mass
change of element i in the interstellar medium as a result of conversation of a
gas into stars. The first sum on the right hand side of equation 6 describes the
contribution of matter ejected by stars as if the stars would eject unconverted
matter. The second sum represents the contribution of syntesized elements. Hav-
ing solved numerically the equations 5 – 7 we obtain a metallicity distribution
function for the stars formed in a fragment of unit mass (with 1 M�) with an
astration level s = 1, see Fig. 1a. Since the evolution of all fragments is de-
scribed by the simple model the metallicity distribution function of stars in all
fragments will have same shape (Fig. 1a) but the upper metallicity limit of the
stars in fragments with different astration levels will be different.

In order to test the validity of the building-up numerical model we carried
out a comparison of numerical results with analytical. The comparison of stellar
metallicity distributions calculated within the framework of the numerical model

Fig. 1. (a) the metallicity distribution function calculated in the framework of the
numerical model for a fragment with a level astration s = 1. (b) A comparison of the
results from numerical (solid line) and analytical (asterisks) modelling of the cumulative
stellar metallicity distribution
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and with the help of the analytical expression of the simple model taken from
[3] is shown in Fig. 1b.

Let us now consider the method by which it is possible to obtain masses of
fragments where the halo stellar population was formed. Let aj be the fraction
of stars found in a range of metallicities Zj , Zj + ∆Z in a fragment with mass
m (in our case m = 1Msun). Then an observed amount of halo stars finding in
a range of metallicities Zj , Zj + ∆Z will be represent the total amount of stars
NZj

= aj

∑n
i=1 mi of a given metallicity Zj from all fragments whose maximum

metallicity exceeds Zj . For given set of metallicities we have

a1 · m1 + a1 · m2 + a1 · m3 + . . . + a1 · mn = NZ1

a2 · m2 + a2 · m3 + . . . + a2 · mn = NZ2

...
...

an · mn = NZn

The fragment with the highest astration level s determines the number of stars
with the greatest value of a metallicity Zn. Having solved the set of equations
(8a) it is possible to obtain the masses of fragments with maximum metallicities
of stars from Z1 up to Zn (i.e. the number of fragments with unit mass falling on
given Zj and responsible for the halo stars with such metallicity). Thus, using
an observed metallicity distribution of a halo stars and a modelled metallicity
distribution function for a fragment of unit mass we shall obtain a value of the
total mass of the unit mass fragments evolved up to each given value of astration
level s. It is necessary to note that we can obtain the total mass of fragments
evolved up to a given value of metallicity Zj but not the number of fragments
that are included in this total mass.

3 Results and Discussion

3.1 The Halo Field Stars of Our and Some Other Galaxies

Let us now compare the obtained set of fragments for the halo field stars of our
Galaxy (Fig. 2a), M31 (Fig. 2c), NGC 5128 (Fig. 2e). It is necessary to mention
that obtained values of masses of fragments are conditional since in order to
obtain the precise masses of fragments the mass of the stellar halos of the in-
vestigated galaxies were necessary. This value was only available for our Galaxy.
Therefore the value of a halo mass 5∗1010Msun for a halo field stars and 109Msun

for a halo globular clusters was accepted for all galaxies. The obtained results for
our Galaxy show that the halo stellar population was formed in fragments with
low astration levels and high metallicity dispersion. The theoretical distribution
obtained from a mixture of stars from different fragments of the set quite well
reproduces the observable distribution (Fig. 2b). It allows us to consider that the
halo field stars of our Galaxy were formed in a fragments with a low astration
levels and high metallicity dispersion.
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Fig. 2. a) The set of fragments obtained from observable metallicity distribution of
a halo field stars of our Galaxy b) The comparison of observable (solid line)[14] and
theoretical (dotted line) metallicity distributions obtained from a mixture of the stellar
population of fragments in a Fig. 2 c) the set of fragments obtained from the observable
metallicity distribution of halo field stars of M31 d) The comparison of the observable
(solid line)[8] and the theoretical (dotted line) metallicity distributions of M31 halo
field stars e) The set of fragments obtained from observable metallicity distribution of
a halo field stars of NGC 5128 f) The comparison of the observed (solid line)[11] and
the theoretical (dotted line) metallicity distributions of NGC 5128 halo field stars

Although the metallicity distribution of stars from the obtained set of frag-
ments for M31 reproduces a general wiev of observed distributions it shows more
metal-poor stars (Fig. 2d) than it is really observed. The similar pattern is also
gained for NGC 5128 (Fig. 2e, 2f). Harris and Harris[12] who investigated the
observed metallicity distributions of halo stars of these galaxies concluded that
the halo of NGC 5128 and M31 (opposite to the halo of our Galaxy) was formed
by the merger of large satellites (similar to LMC, Small Magellanic Cloud and
M32 by sizes) rather than by an accretion of smaller stellar systems. Bekki with
collaborators[5] have considered a formation of an ellipticals (in particular NGC
5128) by merging of a spiral galaxies and they also have found out that the
stellar halo of elliptic galaxies formed by this way, is populated mainly by stars
with rather high metallicity ([m/H] ∼ −0.4) which came from a exterior parts
of disks of merging spiral galaxies.It is interesting that if a halo mass fraction
of their merging spirals is more then 0.2 the simulated metallicity distribution
function shows more metal-poor stars than observable metallicity distribution
function. As suggests [5], similarity between distributions of NGC 5128 and of
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M31 can be explained in the case when bulge of M31 also was formed by merging
of two spirals. Thus, it is possible to assume that if the halo field stars of M31
and NGC 5128 were really formed in mergers the closed box approximation of
accreted fragment does not suit this case.

3.2 A Globular Cluster System of Our and Some Other Galaxies

The part of a globular cluster metallicity distribution which includes halo globu-
lar clusters was only used for computation of masses of fragments. The distribu-
tion of halo globular clusters of galaxies was obtained by Gauss approximation
of observed distributions in all cases except our Galaxy. In Fig. 3a the set of frag-
ments obtained from observable metallicity distribution of halo globular clusters
of our Galaxy is shown. The comparison of observable distribution and distribu-
tions obtained from a mixture of stars of fragments in Fig. 3a shows (Fig. 3b)
that the obtained set of fragments not so well reproduces observable metallicity
distribution of halo globular clusters of our Galaxy as it was expected. Although
metallicity distribution for halo globular clusters is more narrow than for field
stars (Fig. 3) peaks of observable metallicity distributions of halo field stars
of and halo globular clusters of our Galaxy coincide. The Fig. 3d shows age -
metallicity relation for globular clusters of our Galaxy. The comparison of ob-
servations with tracks of fragments of a unit mass (evolved as closed system)
shows that the stellar population of fragments whose star formation began in
a different times can reproduce declination and scatter of observable values of
ages and metallicities in Fig. 3d. Thus it is quite possible that the halo globular
clusters could be formed together with a major part of halo field stars in the
same fragments and consideration of formation of halo globular clusters of our
Galaxy as an isolated subsystem is not meaningful.

The comparison of observed and theoretical (obtained from a mixture of
stars of the fragments (Fig. 3e)) distributions shows (Fig. 3f) that the theoreti-
cal distribution don’t well reproduce the metallicity distribution of halo globular
clusters of M31. Some surplus of metal-poor stellar population takes place here.
The peaks of observed metallicity distributions of halo field stars and of halo
globular clusters of M31 do not coincide (the observations give [Fe/H] ∼-0.6 [6]
and [Fe/H] ∼-1.4[4] accordingly). Peak of distribution of halo field stars of M31
coincides with peak of distribution of bulge globular clusters which value [Fe/H]
also makes ∼ −0.6 [4]. Apparently, in the case of M31 we really deal with the
population of a spheroid, as it was already mentioned in [8]. In such case, it is
possible to consider the evolution of halo globular clusters isolately. However, in
any case the surplus of the metal-poor stellar population in theoretical distribu-
tion of M31 halo globular clusters (as well as halo field stars) does not allow to
assume that the halo globular clusters were formed in fragments evolved as the
closed system.

The theoretical metallicity distribution o NGC 5128 (Fig. 3h) which was
obtained from a mixture of the stellar population of fragments in a Fig. 3g
shows the surplus of the metal- poor stellar population.
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Fig. 3. a) The set of fragments obtained from the observed halo globular cluster
metallicity distribution of our Galaxy b) The comparison of observable (solid line)[1]
and theoretical (dotted line) metallicity distribution of Galaxy halo globular clusters. c)
The comparison of observed metallicity distributions of halo field stars (solid line)[14]
and halo globular clusters (dotted line) [1] for our Galaxy d) Age - metallicity relation
for globular clusters of our Galaxy. The evolutionary tracks of unit mass fragments
(with the time of evolution of 5 Gyr) whose star formation began 11, 12, 13 and
14 Gyr ago is shown by lines. Observational data are taken from [16, 17] e) The
set of fragments obtained from observable metallicity distribution of halo globular
clusters of M31 f) The comparison of observable (solid line)[4] and theoretical (dotted
line) metallicity distributions of M31 halo globular clusters. g) The set of fragments
obtained from observable metallicity distribution of halo globular clusters of NGC 5128
h) The comparison of observable (solid line)[10] and theoretical (dotted line) metallicity
distribution of NGC 5128 halo globular clusters i) The set of fragments obtained from
observable metallicity distribution of halo globular clusters of M87 j) The comparison
of observable (solid line)[7] and theoretical (dotted line) metallicity distribution of M87
halo globular clusters
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The comparison of metallicity distributions of halo field stars and halo glob-
ular clusters of NGC 5128 shows an discrepancy of distribution peaks (the ob-
servations give [Fe/H] ∼-0.75 [13] and [Fe/H] ∼-1.11[9] accordingly).

The theoretical distribution for a case M87 (Fig. 3j) generally reproduces an
overall view of observed metallicity distribution though the obtained number of
globular clusters in each bin is not corresponding with the number of globular
clusters in observed metallicity distribution of halo globular clusters for M87.

4 Conclusions

Our results allow us to conclude that halo field star formation in our Galaxy can
be occured in the fragments evolved as closed system. If the formation of halo
field stars of M31 and NGC 5128 has occured by mergers of massive fragments
the closed box model of merging fragments doesn’t suit this case. The formation
of halo field stars of these galaxies perhaps is not associated with the formation
of the halo globular clusters in these galaxies In our Galaxy the formation of
the halo field stars could be associated with the halo globular cluster formation.
The formation of halo globular cluster subsystem as an isolated subsystem in
ellipticals (NGC 5128 and M87) is more probable then in spirals (Galaxy and
M31). If the halo globular clusters were formed in fragments, a consideration of
fragment’s evolution as an closed system is not enough to reproduce the observed
metallicity distribution of halo globular clusters of ellipticals as spirals.
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ity and partial financial support. The autor also thanks Pilyugin L.S. and the
anonymous referee for a series of valuable notes and help in process of prepa-
ration of the paper, Khomenko E.V. for her invaluable help in the development
of the necessary programs, Dr.Cardwell and Ms.Rebecca from the IAC for the
reading and correcting of this paper. This work was supported by the Ukrainian
Fund of Fundamental Researches (grant 02.07/00132)

References

1. T.V. Borkova, V.A. Marsakov: AZh 77, 750 (2000)
2. L.S. Pilyugin: AZh 71, 825 (1994)
3. R.J. Tayler: Galaxies: Structure and Evolution (Mir, Moscow 1981)
4. P. Barmby, J.P. Huchra, J.P. Brodie, D.A. Forbes, L.L. Schroder, C.L. Grilmair:

Astron. J. 119, 727 (2000)
5. K. Bekki, W.E. Harris, G.L.H. Harris : astro-ph/0212545
6. M. Bellazzini, C.Cacciari, L.Federici, F. Fusi Pecci, M. Rich:astro-ph/0212531
7. J.G. Cohen, J.P. Blakeslee, A. Ryzhov: Astrophys. J. 496, 808 (1998)
8. P.R. Durrell, W.E. Harris, C.J. Pritchet: Astron. J. 121, 2557 (2001)
9. H.Eerik, P.Tenjes:astro-ph/0212522

10. G. Harris, D. Geisler, H. Harris, J. Hesser: Astron. J. 104, 613 (1992)
11. G. Harris, W. Harris, G. Poole: Astron. J. 117, 855 (1999)
12. G. Harris, W. Harris: Astron. J. 120, 2423 (2000)



356 Tetyana Nykytyuk

13. W.E.Harris, G.L.H. Harris: Astron.J. 122, 3065 (2001)
14. S.G. Ryan, J.E. Norris: Astron. J. 101, 1865 (1991)
15. E. Salpeter: Astrophys. J. 121, 161 (1955)
16. M.Salaris, A. Weiss: astro-ph/9704238
17. M. Salaris, A.Weiss A.: astro-ph/0204410
18. L. Searle, W. Zinn: Astroph. J. 225, 357 (1978)



Model of Ejection of Matter
from Dense Stellar Cluster
and Chaotic Motion of Gravitating Shells

Maxim V. Barkov1, Vladimir A. Belinski2,
Genadii S. Bisnovatyi-Kogan1, and Anatoly I. Neishtadt1

1 Space Research Institute, Russian Academy of Sciences, 117997, 84/32
Profsoyuznaya Str, Moscow, Russia;

2 National Institute of Nuclear physics (INFN) and International Center of
Relativistic Astrophysics (ICRA), Rome, Italy

Abstract. It is shown that during the motion of two initially gravitationally bound
spherical shells, consisting of point particles moving along ballistic trajectories, one of
the shell may be expelled to infinity at subrelativistic speed vexp ≤ 0.25c. The problem
is solved in Newtonian gravity. Motion of two intersecting shells in the case when they
do not runaway shows a chaotic behaviour. We hope that this simple toy model can
give nevertheless a qualitative idea on the nature of the mechanism of matter outbursts
from the dense stellar clusters.

1 Introduction

Dynamical processes around supermassive black holes in quasars, blazars and
active galactic nuclei (AGN) are characterised by violent phenomena, leading
to formation of jets and other outbursts. Here we consider the possibility of a
shell outburst from a supermassive black holes (SBH) surrounded by a dense
massive stellar cluster, basing on a pure ballistic interaction of gravitating shells
oscillating around SBH.

Investigation of spherical stellar clusters using shell approximation was started
by Hénon [6], and than have been successfully applied for investigation of the
stability [7], violent relaxation and collapse [5, 6, 10], leading to formation of a
stationary cluster. Investigation of the evolution of spherical stellar cluster with
account of different physical processes was done on the base of a shell model in
the classical series of papers of L. Spitzer and his coauthors [15–22], see also [12].

Numerical calculations of a collapse of stellar clusters in a shell approximation
[3, 4, 23] had shown, that even if all shells are initially gravitationally bound,
after a number of intersections some shells obtain sufficient energy to become
unbound, and to be thrown to the infinity. In the Newtonian gravity the remnant
is formed as a stationary stellar cluster, and in general relativity SBH may be
formed as a remnant.

Important example of a quasi-spherical mass ejection is a relativistic col-
lapse of a spherical stellar system, which is considered [8, 9, 14, 24] as the main
mechanism of a formation of supermassive black holes in the galactic centers.

G. Contopoulos and N. Voglis (Eds.): LNP 626, pp. 357–364, 2003.
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Approximation of such collapse by consideration of spherical shells is the sim-
plest approach, which reflects all important features of such collapse [3–5]. Our
consideration is related to the motion of stars (shells) which remain outside the
newly formed supermassive black hole.

Here we consider a simplified problem of a motion of two massive spherical
shells, each consisting of stars with the same specific angular momentum and
energies, around SBH. In a more complicated case of numerous shell intersections
this elementary act is a key process of the energy exchange between stars and
of matter ejection. This is also the elementary process leading to the violent
relaxation of the cluster [10], studied in the shell approximation in [3–5].

Development of chaos during the motion of two gravitating intersecting shells
had been found first by Miller and Youngkins [11] in the oversimplified case
with a pure radial motion and reflecting inner boundary. We have found [2] a
chaotic behaviour in a more realistic model where stars with the same energy and
angular momentum are dispersed isotropically over the spherical shell, and each
star moves along its ballistic trajectory in the averaged gravitational field, with
account of the shell self-gravity. We find conditions at which one of two shells
is expelling to infinity taking energy from another shell. We find a maximum of
the velocity of the outbursting shell as a function of the ratio of its mass m to
the mass M of SBH using Newtonian theory of the shell’s motion.

We show, that for equal masses of two shells the expelling velocity reach the
value vmax ≈ 0.3547vp at m/M = 1.0 , and vmax ≥ 0.3vp was obtained at the
masses of shells 0.25 ÷ 1.5M , where the parabolic velocity of a shell in the point
of a smallest distance to the black hole vp may be of a considerable part of c.

In Sects. 2,3 we describe outburst effect and in Sects. 4 we present the ev-
idence of the chaos in the system of intersecting shells. The exact solution of
these problems in the context of General Relativity have been found in [1].

2 Two Shells Around SBH

Physically the nature of the ballistic ejection is based on the following four
subsequent events. The outer shell is accelerated moving to the center in a strong
gravitational field of a central body and inner shell. Somewhere near the inner
minimal radius of the trajectory shells intersect. After that the former outer
shell is decelerating moving from the center in the weaker gravitational field of
only one central body. The second intersection happens somewhere far from the
center. That may result in the situation when the total energy (negative) of the
initially gravitationally bound outer shell is becoming positive as a result of two
subsequent intersections with another shell. The quantitative analysis of this
process is done in [2].

Equation of motion of a shell with mass m and total conserved energy E in
the field of a central body with mass M is

E =
mv2

2
− Gm(M + m/2)

r
+

J2m

2r2 , (1)
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where v = dr/dt is the radial velocity of the shell and J2m/2r2 is the total
kinetic energy of tangential motions of all particles, which the shell is made up
from. The constant J > 0 has that interpretation that Jm is the sum of the
absolute values of the angular momenta of all particles.The term m/2 in (1) is
due to the self-gravity of the shell.

Let us consider two shells with parameters m1, J1 and m2, J2 moving around
SBH with mass M . Let the shell “1” be initially outer and the shell “2” be the
inner one. Then equations of motion are:

E1(0) =
m1v

2
1(0)

2
− Gm1(M + m1/2 + m2)

r
+

J2
1m1

2r2 , (2)

E2(0) =
m2v

2
2(0)

2
− Gm2(M + m2/2)

r
+

J2
2m2

2r2 . (3)

By the index (0) we mark the initial evolution stage before the first intersection
of the shells. Assume that both shells are moving to the center. Such shells
intersect each other at a some radius r = a1 and at some time t = t1 after first
intersection the shell “1” becomes inner and shell “2” outer and at a some radius
r = a2 and at some time t = t2 they have second intersection. The motion of
the shells after first intersection is designated by the index (1), and after second
intersection is designated by the index (2):

E1(2) = E1(1) − Gm1m2

a2
= E1(0) + Gm1m2

(
1
a1

− 1
a2

)
, (4)

E2(2) = E2(1) +
Gm1m2

a2
= E2(0) − Gm1m2

(
1
a1

− 1
a2

)
. (5)

Let us describe the situation, when one shell is ejected to infinity after intersec-
tion of to initially bound shells. We consider a case when a2 is larger then a1
so, that the second term in (4) has larger absolute value, then the first one, the
first shell gains a positive energy and goes to infinity. Both shells have initial
negative energies E1(0) and E2(0), but with small enough absolute values. The
first shell takes the energy from the second one, which is becoming more bound
with larger absolute value of the negative energy E2(2), according to (4).

3 Numerical Solution

Let us illustrate the foregoing scenario by an exact particular example of two
shells of equal masses. We choose parameters in the following way:

m1 = m2 = m, E1(0) = E2(0) = 0, J1 < J2, (6)

In fact such exact solution represents the first approximation to the more general
situation when E1(0) and E2(0) are non-zero (negative) but small in that sense
that both modulus |E1(0)| and |E2(0)| are much less than Gm2/a1.
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We assume that initially both shells are moving towards the center. It follows
from (2), (3) that under condition (6) such shells will intersect inescapably at
the point r = a1, t = t1. After the second intersection at r = a2, t = t2 the shell
“1” will be thrown to infinity with expelling velocity v1exp. It follows from (4)
that

v1exp = v1(2)
∣∣
r→∞ =

√
2Gm

(
1
a1

− 1
a2

)
. (7)

In order to construct a solution with maximal possible v1exp we consider a case
when initially inner shell “2” reaches the inner turning point at minimal possible
radius r = rm of the order of few rg = 2GM/c2, and intersects with the initially
outer shell after, during its outward motion (see Fig. 1).

Between the first and second intersection there exists the inner turning point
of the shell “1” (now inner shell). We take that additional restriction that the
shell “1” reaches this turning point also at the minimal possible radius r = rm.
It is easy to show that a wide class of solutions with such restriction really exists
(see Fig. 1).

We now introduce the “parabolic” velocity vp of the any outer shell at the
point of its minimal distance to the center r = rm as:

vp =

√
2G(M + 3m/2)

rm
. (8)

Then we have
v1exp

vp
=

√
m

M + 3m/2

(
rm

a1
− rm

a2

)
. (9)

Consequently this ratio is also a function of a1/rm and m/M . We find numeri-
cally the value of a1/rm maximizing the ratio v1exp/vp which value is a function
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Fig. 1. Time dependence of radii r of two shells (in units rm) on time t (in units
rm/vp, vp =

√
2G(M + 3m/2)/rm). The shells intersect at points a1 = 1.1401, a2 =

3.6316. Here m/M = 0.1, and after the second intersection the first shell is running
away with velocity at infinity v1exp = 0.23415vp.
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Fig. 2. Dependence of the maximum runaway velocity v1exp in units vp on the ratio of
the shell mass to the mass of central body m/M . The maximum value of v1exp = 0.3547
corresponds to m/M = 1.0.

of m/M only. Dependencies for v1exp/vp as functions of the parameter m/M for
these maximizing solutions are given in Fig. 2.

The numerical calculations (illustrated by the Fig. 2) shows that the run-
away velocity v1exp reaches its maximal possible value at m/M ≈ 1.0 and it
is v1exp ≈ 0.3547vp. If we consider the shells around SBH then the minimal
radius rm of the shell “1” orbit cannot be less then the two gravitational radii
2rg = 4G(M + 3m/2)/c2. In the extreme case when rm = 2rg we have vp ∼ c/

√
2

and for the maximal possible runaway velocity we get v1exp ∼ 0.25c.

4 Chaos in the Shell Motion

The first evidence that the motion of two intersecting shells can show chaotic
character was given by B.N. Miller & V.P. Youngkins [11]. They investigated the
special case when the central body is absent and particles making up the shells
are moving only in radial direction (in our notation M = 0 and J1 = J2 = 0)
with an artificial reflection at a given inner radius. This situation, however,
cannot model astrophysical cluster with massive nuclei, and also the problem of
the influence of central Newtonian singularity arises, which need some additional
care. In any case a study of more physically realistic models with nonzero M, J1
and J2 from the point of view of possible chaotic behaviour represents an essential
interest. We report here some numerical results for such more general two-shells
model which were investigated in the previous sections but again for the shells
with equal masses.

We fix here the initial specific angular momenta and energies, different for
both shells, initial radii of the shells, and vary only the mass ratios of the shells
and the central body. It was found that at our choice of parameters the motion
of the shells becomes chaotic at m/M = 2%.

For more clear understanding of the problem let us consider the following
simplification. Put one of the shell mass equal to zero. We fix the specific angular
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momenta of the shells (the angular momentum of the light shell is less than the
angular momentum of the heavy one) and initial specific energy of the heavy
shell. The initial specific energy of the light shell is chosen to satisfy the following
condition: specific energy of the heavy shell is less than that of the light one.
Due to these conditions on every turnover the light shell has two intersections
with the heavy shell.

We implement the approach from [13] for analysis of this model. Namely, we
study Poincaré section and Poincaré return map of the problem. We define in the
phase space the surface for Poincaré section by conditions that the radial velocity
of the light shell is 0, and the radius of the light shell has a local minimum. Let
E, E′ and η, η′ (defined modulus 2π) be specific energies of the light shell and
phases of the heavy shell at two subsequent time moments when the radius of
the light shell has minima. (Phase of the heavy shell is just the mean anomaly
of Keplerian motion of this shell). The Poincaré map sends pair E, η to the
E′, η′. This map is area-preserving. The trajectories of several initial points under
the action of the Poincaré map are shown in Fig. 3. While for the problem
under consideration the forces are discontinuous, the Poincaré return map is
analytic, and therefore KAM theory can be applied for small values of m/M ,
where m = m2. Note that E −E′ ∼ m/M , η − η′ ∼ (−E′)−3/2, similarly to [13].
Following [13], we get the estimate for the border value E∗ of the chaotic region
in E-space (see Fig. 3) E∗ ∼ (m/M)2/5, i.e. the chaotic behavior is possible at
any value of m/M (see Figs. 3-4). Our numerical simulation suggests relation
E∗

1 ∼ (m/M)0.42; at E > E∗
1 runaway of the light shell is possible and at

E < E∗
1 the light shell is not be able to escape. The region E < E∗

1 up to a
residue of a small measure is filled with invariant curves of the Poincaré map in
accordance with KAM theory. Another relation E∗

2 ∼ (m/M)0.46 was found for
energy value separating the region E > E∗

2 in where the shell motion is chaotic
and the region (E∗

1 < E < E∗
2 ) in which the regular motion is possible. As one

can see, the numerical simulations and analytical estimation give close results.

Fig. 3. Distribution of points in (E,η)-space for m/M = 0.005. The upper line indicates
the border of capture of a shell, i.e. E=0. E∗ is the lower limit of the chaotic motion,
related to the breakdown of the invariant curve in the KAM theory. The structure is
similar [13] for different values of the m/M .
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Fig. 4. The lines divide the plane into 3 regions. Above the first line (E∗
1 ∼

−(m/M)0.42) escape to infinity is impossible for any initial parameter values. Below
the second line (E∗

2 ∼ −(m/M)0.46) escape to infinity is possible for any initial param-
eter values. For region between lines “1” and “2” the possibility of escaping to infinity
depends on initial conditions.

In the case when the light shell does not have two intersections on every
turnover, the Poincaré return map is continuous but not smooth. In this case
KAM theory is not applicable. Invariant sets become belt-like and have non zero
width.
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Abstract. A comparison of the formation of counterrotating elliptical galaxies is made
in two alternative scenarios: (a) The scenario of merging of a primary and a satellite
galaxy, and (b) the direct scenario, in which counterrotating galaxies are formed di-
rectly from cosmological initial conditions. We conclude that, although both scenarios
might have worked in parallel, the scenario of merging has a large number of param-
eters that should be well tuned to form a counterrotating galaxy in contrast to the
direct scenario that is controlled by only two or three parameters. This could give
more chances to the direct scenario.

Introduction

It is known, nowadays, from observations, that almost 1/3 of the elliptical galax-
ies present a counterrotating core (CRCs hereafter) with respect to the rest of
the galaxy [4], [14], [15], [5], [22], [23]. A number of cases of spiral counterrotating
core galaxies are also reported [8].

The scenarios proposed in the literature explaining the formation of such
galaxies are split into two main categories: a) the merger scenarios and b) the
non-merger scenarios. According to the first scenarios CRCs ellipticals are the
result of the merging between two galaxies. The merging can be either dissipa-
tionless, i.e. between a main galaxy and a satellite one [2], [1], or between two
spiral galaxies [26], [3]. Similar scenarios consider episodic gas infall, or accre-
tion of a gas rich companion [6], [7]. Most of these scenarios fail to explain the
reddening and the increased metallicity of the core of the CRC galaxy.

A non-merger scenario has been proposed by Hau and Thomson [18] accord-
ing to which tidal torquing on the main body of the galaxy is caused by another
passing galaxy. This torque can reverse the sense of rotation of the outer parts
of the galaxy and therefore can in general produce a kinematically decoupled
core.

An alternative non-merger scenario, is the one that we call direct scenario
and it was proposed by Voglis et al [28], [17], [29], where a bar-like density ex-
cess in the early Universe (i.e. Decoupling) that makes bound the material of a
protogalactic cloud, can work as a seed to form a CRC galaxy. The great advan-
tage of this scenario is that it explains the almost total lack of any population
differences between the core and the main body of the galaxy as well as between
the CRC galaxies and other normal galaxies.
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A brief discussion of the direct scenario is given in Sect. 1. In Sect. 2 the initial
conditions and the results of a numerical experiment are described, in which a
counterrotating galaxy is formed from cosmological clumpy initial conditions. In
Sect. 3 we describe the initial conditions and the results of another experiment in
which a counterrotating galaxy is formed by the merging process. The parameters
in the latter case were arranged so that the two galaxies have almost the same
rotation velocity curve. This allows a comparison between the two scenarios
discussed in Sect. 4.

1 Basic Features of the Direct Scenario

Let’s consider a density perturbation at the early post-decoupling Universe which
has a bar-like shape and is formed by small clumps of mass. The most tightly
bounded particles have a quadrupole moment with major axis A1 along a random
direction (Fig. 1). Then the distribution of the more loosely bound particles has a
quadrupole moment with major axis along the direction A2. This protogalactic
cloud is surrounded by an anisotropic environment which creates a tidal field
with random orientation of its main axis (direction of larger forces).

If the axis A1 is along the direction of 2nd-4th quadrant, then these particles
will acquire positive angular momentum while the more loosely bound particles
being mainly along the direction 1st-3rd-quadrant (along A2 in Fig. 1), acquire
negative angular momentum.

Therefore, this configuration has a certain distribution of angular momentum
along the radius, that can initiate a counterrotating system. After the collapse
and the mixing of the particles this initial distribution of the angular momentum
can survive under some conditions.

Fig. 1. A bar like distribution with major axis A1. Loosely bound particles have major
axis A2
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The violent relaxation of the system cannot erase all the memory of the initial
conditions and therefore the particles remember their initial energies (and as a
consequence their initial positions) in a statistical sense, even for a Hubble time.

This scenario is verified by N-body simulations in two different cases of ini-
tial conditions, namely quiet initial conditions [28], [17], [16] and clumpy initial
conditions [29].

In the case of quiet initial conditions we found that a counterrotating galaxy is
formed when the bar-like initial density perturbation has an axial ratio around
the value 0.5. If this ratio is changed to 0.4, negative rotation dominates all
along the radius, while for a ratio 0.8, positive rotation dominates all along the
radius [17].

A second parameter that influences the appearance of counterrotation is the
strength of the external tidal field. It was found that a modest external tidal
field favors the formation of counterrotating galaxies, while a strong or a weak
tidal field favor the formation of galaxies with simple rotation [16].

2 Counterrotation from Clumpy Cosmological
Initial Conditions

This scenario can be realized in the case of clumpy cosmological initial conditions
as follows. We used two different mass scales: the galactic mass scale named G-
scale which contains 2 Mu (where Mu is the mass unit, i.e. the mass of a galaxy)
and the environment scale named E-scale which contains 664 Mu.

The G-scale distribution of particles is composed of a number of Ng = 5616
particles of equal mass initially arranged in Lagrangian coordinates (q1, q2, q3)
in a cubic grid limited by a sphere. The size of the system is arranged in such
a way that when it expands with the Universe it has total energy equal to
zero, simulating the expansion of an Einstein-de Sitter Universe (i.e. Ω = 1, all
distance increase with time t as t2/3).

The positions and velocities of particles, when the system is perturbed, are
evolved by the Zeldovich approximation [31], as explained analytically in [29].

The E-scale is resolved into 664 particles put initially in a cubic grid limited
by a sphere. Eight central particles of this grid have been removed to make room
for the location of the G-scale. Each of the remaining particles of the E-scale has
mass equal to 1 Mu. Their grid is slightly deformed in such a way that undesirable
non-cosmological torques acting of the G-scale due to the discreteness of the
E-scale is almost eliminated (see for details [27]). Then the positions and the
velocities of the E-scale particles are evolved in such a way so that it simulates
correctly the initial strength and the time behavior of the cosmological tidal
torque in agreement with the analytical calculations during the linear phase of
evolution of the density perturbation. The Y-axis is the axis of strongest forces
of the tidal field. In Fig. 2a the overall projection of the initial configuration is
shown at a time=0, when the N-body calculations start. The G-scale is shown
in magnification in Fig. 2b at the same time.
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Fig. 2. The projection of the initial configuration on the y-z plane at time=0. (a) the
whole configuration and (b) the g-scale only

The evolution of the whole system (of both scales) is followed simultaneously
by Aarseth’s N-body2 code. The units of time tun, length run and velocity vun

in our unit system are expressed in terms of real units as:

tun = 0.875β3/2Myears (1)

run = 1.5β(
Mun

M12
)1/3(Kpc) (2)

vun = 1677β−1/2(
Mun

M12
)1/3(km/sec) (3)

where M12 = 1012M� and β is a re-scaling parameter.
The G-scale configuration evolves so that a part of about 4800 particles of

it reaches a maximum radius of expansion and then detaches from the general
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Fig. 3. The isodensity contours plotted on the Y-Z plane at time=400tun for the ex-
periment with clumpy initial conditions

expansion. During this period clumps grow inside it, and gradually merge to
form a single main clump i.e. a galaxy. ‘Violent relaxation’ occurs by the process
of gradual merging.

For a certain range of the initial parameters i.e., consistent to the values used
in the case of quiet initial conditions in Harsoula and Voglis 1998, we detected
counterrotation in the relaxed system.

In Fig. 3 the isodensity contours are plotted on the Y-Z plane at a time
corresponding to 400tun. It’s obvious that the most tightly bound particles form
a bar-like density perturbation with a major axis of about 50o with respect to the
tidal axis. These particles acquire therefore positive angular momentum, while
the less tightly bound particles have a major axis almost perpendicular to the
axis of the most bound ones and acquire negative angular momentum.

Beyond a time of 4000tun the bar and a considerable part of the G-scale
around the bar has collapsed and been relaxed to a bound system i.e. a galaxy.
The secondary infall is no more important.

Figure 4 shows the rotational velocity profile of an experiment with coun-
terrotation. The dots upon the rotation curve correspond to fractions 10%, 20%
etc. of the total mass inside the respective radius. We see that about 60% of the
bound mass has positive rotation, while the rest of the bound mass has nega-
tive rotation. As it was mentioned above the strength of the cosmological tidal
field is important for counterrotation to appear. For example, if we repeat this
experiment having the G-scale exposed to a tidal field, 30% stronger counter-
rotation disappears. Angular momentum of negative sign dominates throughout
the whole configuration. The corresponding rotational velocity profile is shown
in Fig. 5.

Another parameter that could play a role is the initial orientation of the
bar formed by the most tightly bound particles. However, the results are not
expected to be particularly sensitive on this orientation, unless the bar is nearly
parallel or perpendicular to the tidal axis.
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Fig. 4. (The rotational velocity profile for an experiment with clumpy cosmological
initial conditions giving a counterrotating elliptical galaxy

Fig. 5. The rotational velocity profile for an experiment with clumpy cosmological
initial conditions and a tidal field 30% stronger that the one of Fig. 3

3 Counterrotation from Merging with a Satellite Galaxy

Mergers can also produce CRCs. We have already performed some experiments
with mergers in order to compare the two scenarios [30]. Here we present a
deeper investigation studying also the possibility to distinguish CRCs formed by
mergers from those formed by cosmological initial conditions via some observable
quantities.

We therefore have performed several experiments of dissipationless merging
of a primary galaxy and a satellite galaxy. The primary is designed so that all
the orbits rotate in one direction only i.e. contains no retrograde orbits at all.

To form such a primary galaxy, we start with the relaxed configuration of the
experiment with the rotational velocity profile of Fig. 5. Then all the velocity
components uyz, parallel to the Y-Z plane are turned perpendicular to their
position vector component Ryz, with common direction of rotation. Thus the
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system has no retrograde orbits. It remains in the same virial equilibrium and
has a value of the spin parameter λ ≈ 0.1 [25].

The satellite galaxy is produced by isolating a central spherical part of the
initial state of the primary galaxy. We have performed three numerical experi-
ments namely A,B and C. In the experiment A the mass of the satellite galaxy
is about 20% of the primary’s mass, while in the experiment B and C it is about
10% of the primary’s mass. In particular, in C the velocities of the particles of
the satellite have been multiplied by a factor 0.51/2 so that its kinetic energy
is reduced by 50% and the satellite becomes quite compact in this experiment.
We run the satellite separately for several dynamical times (4000 tun) so that it
relaxes to a more compact system (with higher central density) before the start
of the merging process.

Then, in all three experiments, the satellite galaxy is placed on a retrograde
orbit on the plane of rotation of the primary (i.e. on the Y-Z plane) at a distance
of 150run in Y-direction and 50run in Z-direction from the center of mass of the
primary galaxy. The initial velocity of the center of mass of the satellite galaxy
for all the experiments is Us ≈ V p/3 where V p is the velocity of the parabolic
orbit around the primary galaxy.

We notice here that prograde orbits of the satellite galaxy fail to produce
counterrotating cores [2]. This is expected for thermodynamical reasons. Fur-
thermore, simulations with orbital inclination different than zero have very little
possibility to give counterrotating systems [1]. The reason is that the dynamical
friction between the satellite and the rotating primary causes the satellite’s orbit
to pivot such as to be oriented almost upright in relation to the rotation plane
of the primary. A rough idea of the expected change in the orbit’s inclination
was first given by Chandrasekhar with his dynamical friction formula [10].

In Fig. 6 we can see the initial configuration of the primary and of the satellite
galaxy at the start of the N-body run, and the orbit of the center of mass of the
satellite galaxy around the common center of mass of the two galaxies for the
ex. C. The satellite galaxy describes a spiral orbit around the common center
of mass being subject to dynamical friction as it moves towards the primary
galaxy. The most compact part of it relaxes at the center.

In Fig. 7 the line with stars shows the rotation velocity of the primary before
merging. The line with dots in this figure shows the new form of the rotation
velocity of the relaxed system after merging for exp A. This form is similar to the
rotational velocity of Fig. 4 obtained from cosmological initial conditions, with a
little greater maximum value. It is clear therefore that the satellite sinking inside
the primary is able to reverse the rotation near the center, leaving a signature
of its proper angular momentum.

In Fig. 8 we present the rotational velocity profiles for all the three experi-
ments. In ex. A (stars) the central region seems to have greater positive values
of rotation and this is due to the fact that the satellite has twice the number
of particles than in the other two experiments (mass ratio 1:5). Moreover the
absolute values of the rotational velocities for the outer parts of the galaxy are
smaller than in the other two experiments. This is again due to the mass ratio
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Fig. 6. The initial configuration of the primary and the satellite galaxy at time=0 for
ex. C and the spiral orbit of the center of mass of the satellite until the whole system
is relaxed

Fig. 7. (The rotational velocity profiles, of the counterrotating elliptical galaxy formed
by merging of a primary and a satellite galaxy for ex. A (dots) and of the primary galaxy
before the merging (stars)

of the two galaxies which is higher is in ex. A (1:5) and therefore the particles
of the satellite galaxy, having positive angular momentum with respect to the
target galaxy, affect a greater number of particles of the target and can reverse
their rotation. In ex. B (dots) where the mass ratio of the two galaxies is 1:10, we
observe that the whole galaxy rotates with one sign, except of a small fraction of
10% of the remnant’s mass which has a small value of positive rotation. There-
fore the mass ratio can seriously affect the rotational velocity profile and the
ratio 1:10 is an approximate lower threshold for having counterrotating galaxies.
In ex. C (open squares) the mass ratio is still 1:10, but the satellite galaxy is
initially more compact and therefore it can preserve better it’s orbital angular
momentum. Therefore a fraction of 40% of the remnant’s mass has positive ro-



Direct vs Merger 373

Fig. 8. The rotational velocity profile of ex. A (stars), ex. B (dots) and ex. C (open
squares) in the case of merger

tation. It seems that in this case the mixing of the particles is less than in the
other two cases.

4 Comparison of the Results and Discussion

It is useful here to convert the values of the rotational velocities and the ra-
dius of Figs. 4 and 7 in real units and compare with the values observed in
counterrotating galaxies. Barcells and Quinn [2] proposed a typical counterrota-
tion velocity 40km/sec for Mun = 5x1011M� and half mass radius ro=10Kpc,
or at most a factor of 2 higher than this limit. By comparing with our re-
sults where ro ≈ 18run we get from (2) β ≈ 0.42. From equation (3) we get
vun = 1942km/sec. The maximum of the counter rotation velocity of Figs. 3a
and 6a is vmax = (0.018 to 0.033)vun ≈ 35 to 64km/sec. Therefore our results,
either from cosmological initial conditions or from merging, are in agreement
with the observational data.

We have tested the merging scenario for greater values of the initial velocity
of the satellite galaxy. We found that for Vp > Us > V p/3, the final velocity
profile shows greater values of positive rotation in the center.

The scenario of merging events and the direct scenario can occur indepen-
dently. Thus, it is expected that some of the counterrotating galaxies observed
today were formed in one way, while others may have formed in the other way.
In both cases, our simulations have shown that the distribution of the angular
momentum can survive for a Hubble time and therefore it can be observed.

A question that arises is whether, via some observable quantity, counterrotat-
ing elliptical galaxies formed by mergers can be distinguished from those formed
by cosmological collapses.

Hausman and Ostriker [19] proposed that once a typical victim has a higher
central density than the cannibal, its core survives ingestion to produce a core-
within-a-core structure. According to Barcells and Quinn [2], if the mass ratio
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of the merger event is 1 : 5 or higher no obvious trace in the surface brightness
profile is left apart from the fact that, in general, there is no flattening in the
center. This seems to be confirmed in the simulations of Duncan et al [12] where
they have performed mergers with several mass ratios 1 : k with 1 ≤ k ≤ 5. The
surface density profiles of these experiments show no hint of a core-within-a-core
structure.

According to our results a hump in the surface density profile is obvious when
the mass ratio is 1:10 and the initial reduction of the satellite’s initial kinetic
energy is greater that 50%. This is seen in Fig. 9 where the surface density profile
is plotted for all the three experiments. In Fig. 9a the surface profile of ex. A
(solid line) and ex. B (dashed line) is plotted. The two profiles seem quite similar
with no obvious hump. The outer part of the remnant galaxy in both experiments

Fig. 9. The surface density as a function of the radius in logarithmic scale. (a) the
solid line corresponds to ex. A and the dashed line to ex. B (b) the solid line with
dots corresponds to ex. C and the solid line without dots to the primary galaxy before
merger
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follows approximately Hubbles’ power low profile with exponent n ≈ −2, while
it becomes steeper beyond a radius of ≈ 50run. In Fig. 9b, the solid line with
dots corresponds to the remnant of ex. C and the solid line without dots to
the primary galaxy before merging. While the primary profile before merging
flattens inside a radius r ≈ 10run, the remnant profile continue to rise inward
due to the addition of the secondary material and flattens only at the softening
length.

In the curve corresponding to ex. C the hump is obvious in the region where
the satellite dominates the surface density. A similar density profile is presented,
for the first time, in Efstathiou at al [13] for the observed Kinematical decou-
pled core galaxy NGC5813 and as Kormendy [21] suggested this can be a good
candidate for a merger remnant.

In Fig. 10 we compare the surface density profile of ex. C with the one
derived from the experiment with cosmological initial conditions. The solid line
with dots corresponds to ex. C and the solid line without dots corresponds to
the counterrotating system created from cosmological initial conditions. The
latter one seems to flatten near the core, while the profile corresponding to the
merger continues to rise towards the center, due to the addition of the satellite’s
material.

A parameter that is always affected from the merging is the galaxy’s spin
angular momentum. The mixing of particles between the two galaxies and the
tidal torques exerted during the merging can cause the reduction of the spin
of the primary galaxy, as it was remarked already from 1982 by Negroponte
and White [24]. In their simulations the initial spin of the primary galaxy has
reduced up to a factor of 3. This is confirmed in Fig. 11 where the spin angular
momentum parallel to the x-axis (which is the axis of the rotation of the two

Fig. 10. The surface density as a function of the radius in logarithmic scale. The
solid line with dots corresponds to the galaxy formed by merger (ex. C) and the solid
line (without dots) corresponds to the galaxy formed by clumpy cosmological initial
conditions
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Fig. 11. The spin angular momentum of the primary galaxy (dashed line), of the
satellite (solid line) and the orbital angular momentum (line with stars) as a function
of time for ex. A.

galaxies)is plotted as a function of time for ex. A. The dashed line corresponds
to the spin angular momentum of the primary galaxy, the solid line to the spin
of the satellite and the solid line with stars to the angular momentum of the
orbit with respect to the common center of mass. The spins along the other two
directions are very close to zero. From this figure it is obvious that the orbit of the
satellite is retrograde with respect to the rotation of the primary galaxy and that
angular momentum is transferred from the orbit to the individual particles of the
two galaxies. The spin of the primary galaxy starts from a negative value and is
reduced by a factor of 4, until the remnant of the merging has relaxed (at a time
of about 3000 tun) and then remains constant. The satellite, on the other hand,
starts with an almost zero initial value of spin angular momentum and after the
relaxation acquires a positive spin angular momentum with approximately the
same mean value with the value of the primary. These results are in agreement
with Barcells and Quinn [2], who had mentioned that the survival of the satellite
does not imply the survival of its spin. The spin of the satellite becomes always
aligned with the orbital angular momentum, after the merger, irrespective of
its initial orientation or sign. Therefore, the major effect for the presence of
counterrotation is due to the orbital angular momentum of the satellite. Another
parameter that could be useful to check and can be thought as a trace of a past
merger event, is the ellipticity profile of the galaxy. Bender [4] pointed out that
in some observed counterrotating galaxies, the radial transition between the core
and the main body is clearly visible in their ellipticity profiles. He proposed that
this should be a sign of a past merger event. However, the ellipticity profiles
derived from our simulations (Fig. 12), both from merger and from cosmological
initial conditions, look very much alike with the ones presented in Bender’s
paper. In Fig. 12 the line with dots correspond to the ellipticity of the merger
remnant of ex. A as a function of it’s longest axis, while the line with stars
corresponds to the ellipticity of the galaxy with cosmological initial conditions.
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Fig. 12. The ellipticity as a function of the radius along the major axis of the remnant
galaxy of ex. A.(line with dots) and for the galaxy formed by cosmological initial
conditions (line with stars)

A peak of the radial profile of the ellipticity appears in both experiments and
therefore one cannot use the ellipticity profile of an observed counterrotating
galaxy to decide whether it is the product of a merger or it is produced from a
single primordial collapse.

A theoretical argument below gives more chances to the direct scenario. In
the case of cosmological initial conditions there are two main parameters that
have to be arranged in order to produce counterrotating galaxies, namely, the
axial ratio of the bar-like density excess, and the strength of the initial tidal
field. Statistical estimations of these parameters can be directly derived from the
power spectrum of the initial density perturbations (and its various moments).

On the other hand, only a small number of merger events can guarantee
the formation of counterrotating remnants. Those in which a considerably large
number of parameters are well tuned.

For example:
a) The mass ratio of the satellite and the primary as well as the density profile

of the satellite must be inside a certain range of values, so that the satellite not
only survives into the center but also dominates the core of the remnant.

b) the satellite’s orbit must be on the rotation plane of the primary, otherwise
the dynamical friction between the satellite and the rotating primary causes the
satellite to pivot such as to be oriented almost upright in relation to the rotation
plane of the primary,

c) the orbit of the satellite must be retrograde with respect to the rotation
of the primary and have initial kinetic energy such that it does not escape,
disrupted, or totally reverse the sign of the rotation throughout the radius of
the remnant.
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These arguments considerably reduce the possibilities of successful merger
events. A question therefore is how to assign the formation of so many observed
counterrotating ellipticals in such a demanding mechanism.

Recently a study has been made for the environment of galaxies in which
there is gas or stellar counterrotation by Bettoni et al [9]. They concluded that
no significant differences appear between the environments of counterrotating
and normal galaxies. Therefore the hypothesis that counterrotating galaxies and
polar rings derived from a recent interaction with a small satellite or a galaxy
of similar size seems to be disproved and these galaxies seem to follow the idea
that all galaxies are born through a merger process of smaller objects occurring
very early in their life (cosmological initial conditions), or that they have been
derived from a continuous infall of gas that formed stars later.
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Pitch Angle of Spiral Galaxies as Viewed
from Global Instabilities of Flat Stellar Disks

Shunsuke Hozumi

Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany

Abstract. We investigate whether the behavior of the pitch angle, predicted by a
local dispersion relation derived from the density wave theory, can be applied to that
of the fastest growing, globally unstable modes of flat stellar disks. We pay attention
to two-armed modes, and obtain such global modes by numerically integrating the
linearized collisionless Boltzmann equation. The results show that the pitch angle of
the fastest growing modes has a tight correlation with the ratio of the square of the
radial velocity dispersion to the surface density, as indicated by the local theory, over
a sufficiently wide range of radii. The correspondence between the global modes and
global properties of spiral galaxies is briefly discussed.

1 Introduction

Spiral structure is one of the most prominent features in disk galaxies. In fact,
Hubble [6] classified spiral galaxies on the basis of the observed appearance
of spiral arms. However, what his classification scheme, known as the Hubble
sequence, represents physically remains still unclear.

One of the most successful theories to understand spiral structure is the
density wave theory, which was originally conceived by Lindblad [10], and was
first formulated by Lin and Shu [9]. This theory was based on local analysis, so
that owning to the inhomogeneous density distributions in galaxy disks, density
waves are propagated with a group velocity, and disappear in a few dynamical
times [20]. In addition, it is found that spiral shocks [15] induced by a gaseous
component in the disk damp the underlying spiral potential, again on a dynam-
ical time scale [8].

The difficulties confronted with the density wave theory mentioned above
may be overcome by the concept of global modes. Indeed, global analysis of
thin disks has revealed that many unstable modes exist in self-gravitating disks
treated with a fluid approximation [1] and in those composed of stars [7]. In
particular, Bertin et al. [2] have shown that all Hubble morphological types
can be realized by global modes using fluid disk models with appropriate basic
states. In their modal calculations, it is demonstrated that the pitch angle of
global modes depends on a fraction of the active disk mass, the distribution of
Toomre’s Q parameter [19], the typical Q value, and so on. Since their major
concern was to specify the basic state to generate and support a given spiral
structure, they did not describe explicitly what determined the pitch angle of
spiral arms.
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Since the density wave theory gives, in general, a good description of real
spiral galaxies [17], it can help us understand the physics of spiral structure
in spite of a local theory based on a WKBJ approximation. However, it is not
necessarily clear whether the properties of global modes can be fully described
by local density waves (see [21]). In this paper, we first show what is predicted
for the pitch angle of unstable modes on the basis of the density wave theory.
Next, this prediction is examined for the fastest growing two-armed modes of
stellar disks in a global context.

2 Prediction by the Density Wave Theory

For tightly wrapped spiral waves in a cool disk, the dispersion relation for a
one-component fluid model [3] is given by

(ω −mΩ)2 = c2k2 − 2πGΣ|k| + κ2, (1)

where ω, Ω, κ, k, c, G, Σ, and m are the wave frequency, angular speed of
a star, epicyclic frequency, wavenumber, sound speed, gravitational constant,
surface density of the disk, and number of arms in spiral patterns, respectively.
Equation (1) is rewritten as

(ω −mΩ)2 = c2(|k| − πGΣ/c2)2 + κ2 (
1 − 1/Q2

g
)
, (2)

where Qg = κc/(πGΣ) is the Toomre stability parameter for gas disks. When
Qg > 1, all waves are stable, so that there is no specific wave to be selected.
However, taking into account unstable waves, the wave mode with the highest
growth rate should appear in the disk by overwhelming the others with time.
Since the Toomre parameter is a criterion valid only for local axisymmetric Jeans
instabilities, we neglect the stability condition that Qg > 1 in the case of non-
axisymmetric instabilities like those two-armed modes focused on here, and will
find what is expected if (2) includes unstable waves.

Equation (2) indicates that the most unstable wave has the wavenumber
|km| = πGΣ/c2, which is converted to the wavelength λm given by

λm = 2c2/GΣ. (3)

Thus, we can see that the wavelength of the most unstable mode depends on
c2/Σ. As the wavelength is larger, the pitch angle of spiral arms becomes larger.
Therefore, the density wave theory predicts, as is well-known, that the pitch
angle increases with increasing c2/Σ.

3 Models and Method

Since we aim not at the reproduction of real spiral structures but at demon-
strating how well and to what extent the local theory gives a representation of
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the features of global modes, we use disk models appropriate for our concern,
irrespective of the deviation from realism.

We adopt infinitesimally thin Toomre disks [18] without bulges, whose surface
density distributions, Σ, and potentials, Ψ , are given, respectively, by

Σ(R) =
Mq

2πa2

(
1 +

R2

a2

)−3/2

, (4)

and
Ψ(R) = − GM√

R2 + a2
, (5)

where R is the distance from the center of the disk, and a is the length scale.
Here, q (0 < q ≤ 1) represents an active disk mass fraction of the total mass.
Since the Toomre disks are the flat version of Plummer’s models [14] in three-
dimensional configurations, for each disk model the fraction, 1 − q, of the total
mass is considered to reside in a surrounding dark halo represented by a Plummer
model with the same length scale a as that of the disk. Thus, in our models, the
total mass distribution including a disk and a halo is identical, and the mass
fraction of the disk is different.

For this mass profile, we can use Miyamoto’s distribution functions (DFs) [12]
with respect to directly rotating stars, F+(ε, j), where ε and j are the energy
and angular momentum of a star per unit mass, respectively. Retrograde stars
are introduced in the same manner as that adopted by Nishida et al. [13]. Then,
the equilibrium DFs, F0, are given by

F0(ε, j) =
{
q[(1/2)F+

0 (ε) + F+
1 (ε, j)], (j ≥ 0)

(1/2)qF+
0 (ε), (j < 0),

(6)

where the functions, F+
0 (ε) and F+

1 (ε, j), are derived from the expansion of
F+(ε, j) as

F+(ε, j) = F+
0 (ε) + F+

1 (ε, j). (7)

The Miyamoto DFs [12] are characterized by the parameter n that specifies
the distribution of radial velocity dispersion, cr, such that

c2r (R) = − 1
2n+ 4

Ψ(R). (8)

This equation indicates that cr can be provided independently of the disk surface
density.

If disk models satisfy the condition such that (n+ 2)q = constant, they have
the same c2r/Σ distribution throughout the disk, as derived from (4), (5), and (8).
We take (n+ 2)q = 5 with the pairs of (n, q) = (3, 1), (4, 5/6), (5, 5/7), (6, 5/8),
(7, 5/9), and (10, 5/12), and (n + 2)q = 3 with the pairs of (n, q) = (3, 3/5),
(4, 1/2), (5, 3/7), and (6, 3/8). In Fig. 1, the distributions of the Q parameter
for both model sequences are presented. Here, Q is defined for stellar disks as

Q =
κc2r

3.36GΣ
. (9)
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Fig. 1. Distribution of the Toomre stability parameter Q for (a) the models with
(n + 2)q = 5, and for (b) the models with (n + 2)q = 3

It is found from this figure that all models are locally stable, i.e., Q > 1.
The most unstable global modes are obtained by numerically integrating the

linearized collisionless Boltzmann equation given by

dfm

dt
=
∂ψm

∂R

∂F0

∂u
+ imψm

∂F0

∂j
, (10)

where fm and ψm are the perturbed distribution function and perturbed poten-
tial, respectively, with respect to the m-armed mode, and i is the unit of the
imaginary part. Equation (10) is solved as an initial value problem by evolv-
ing an arbitrary form of perturbation, imposed initially, forward in time until it
has reached the exponential growth in fm and ψm. We restrict ourselves only
to m = 2 modes, which are usually the most unstable modes among various
m-armed modes. In fact, most of grand-design spirals show two-armed features.
The numerical details are described in [5].

The units of mass and length, and the gravitational constant are taken so
that M = a = 1 and G = 1, respectively. Then, the unit of time is (a3/GM)1/2.

4 Results

We have obtained the fastest growing two-armed modes of the models with
(n+ 2)q = 5 and those with (n+ 2)q = 3. The growth rate, pattern speed, and
corotation radius of each model are summarized in Table 1 for (n+2)q = 5, and
in Table 2 for (n+ 2)q = 3.

We calculate the pitch angle, ip, given by

cot ip =
∣∣∣∣mR ∂φ∂R

∣∣∣∣ , (11)

where for a specified arm in the disk, φ is the phase angle of the density crest of
the mode along R [3]. Here, we employ m = 2.

The pitch angle of each mode, measured in degrees, is shown in Fig. 2, which
illustrates that the pitch angle profile does not change substantially from model
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Table 1. Results for the fastest growing modes of the models with (n + 2)q = 5

n q Growth Rate Pattern Speed Corotation Radius

3 1 0.224 0.333 1.83

4 5/6 0.167 0.328 1.85

5 5/7 0.119 0.313 1.92

6 5/8 0.0851 0.294 2.03

7 5/9 0.0652 0.275 2.15

10 5/12 0.0516 0.228 2.49

Table 2. Results for the fastest growing modes of the models with (n + 2)q = 3

n q Growth Rate Pattern Speed Corotation Radius

3 3/5 0.0309 0.226 2.51

4 1/2 0.0158 0.213 2.62

5 3/7 0.00744 0.201 2.74

6 3/8 0.00449 0.190 2.86
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Fig. 2. Pitch angle of the fastest growing two-armed modes for (a) the models with
(n + 2)q = 5, and for (b) the models with (n + 2)q = 3

to model for each model sequence. For the (n + 2)q = 5 sequence, all but the
model with (n, q) = (10, 5/12) have nearly the same pitch angle profile within
R = 5. Even if the model with (n, q) = (10, 5/12) is included in this sequence, the
difference in pitch angle is rather small from R ∼ 2 to R ∼ 5. For the (n+2)q = 3
sequence, the pitch angles are not well determined because the very small growth
rates do not enhance the density contrast of the unstable modes conspicuously.
In spite of the large scatters, the pitch angles of these models appear to fluctuate
around a certain profile. Therefore, also in this sequence, it can be found that
the pitch angle profiles are approximately similar to one another. These results
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Fig. 3. Pitch angle of unstable two-armed modes for (a) expected profiles calculated
from the local dispersion relation for (n + 2)q = 5 (solid line), and for (n + 2)q = 3
(dotted line), and for (b) obtained profiles of all the models with (n + 2)q = 5 (solid
lines) and (n + 2)q = 3 (dotted lines)

are remarkable in that models with different radial velocity dispersion profiles
and different degrees of self-gravity show almost the same pitch angle profile
over a sufficiently wide range of radii.

According to the local theory prediction, the increase in c2r/Σ leads to the
increase in pitch angle, as found from (3) and (11). In our models, c2r/Σ is
inversely proportional to (n+ 2)q, and so, the pitch angles for the (n+ 2)q = 3
sequence should be systematically larger than those for the (n+2)q = 5 sequence,
as indicated by Fig. 3 (a), in which the pitch angles are calculated from (3) and
(11). We can see this expected behavior in Fig. 3 (b), where the pitch angle
profiles of all the models are put together. However, the difference in pitch angle
for both model sequences becomes very small at larger radii than R = 3 unlike
those values obtained from the local dispersion relation which are presented in
Fig. 3 (a).

5 Discussion and Conclusions

We have found that the pitch angles of the fastest growing modes obey the
prediction derived from the density wave theory even in a global context. We
conclude from our global mode calculations that the pitch angles of spiral arms
are regulated to a considerable degree by a typical value of c2r/Σ, if spiral struc-
ture is viewed as a manifestation of the fastest growing modes of stellar disks. In
addition, our results indicate that the density wave theory is helpful to under-
stand the properties of global modes qualitatively. In particular, although the
theory is developed for tightly wound spirals, it is still useful for loosely wound
spirals because the pitch angles obtained here are typically 20◦.

Roberts and Haynes [16] have summarized the global properties of spiral
galaxies along the Hubble sequence. According to their Fig. 2, there is no practi-
cally systematic change in total mass at least from Sa to Sc. Furthermore, their
Fig. 3 illustrates that the total surface density including gaseous and stellar
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components decreases slightly from Sa to Sc. If the mass distributions of spiral
galaxies would not change substantially, the decrease in total surface density and
the increase in pitch angle, together with our results, suggest that cr would be
nearly constant or increase from Sa to Sc. Therefore, observations of cr along
the Hubble sequence will clarify the relevance of our argument.

Recently, Ma [11] has revealed that the pitch angle increases as the disk
surface density decreases by analyzing all Hubble type galaxies altogether. Ma’s
finding is consistent with our results of global mode calculations. His analysis
shows a large scatter in the relation between the pitch angle and the surface
density. If a typical c2r/Σ instead of Σ was chosen for each spiral galaxy, this
scatter might be reduced.

From the arguments mentioned above, real spiral structures appear to reflect
the characteristics of the fastest growing, global modes of stellar disks. In fact,
the old stellar population observed at near-infrared wavelengths forms large-
scale smooth symmetric arms in the disk (e.g., [4]). These features may be a
manifestation of globally unstable modes.
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Abstract. We describe a particular aspect of the effects of the parent cluster tidal
field (CTF) on stellar orbits inside cluster Elliptical galaxies (Es). In particular we dis-
cuss, with the aid of a simple numerical model, the possibility that collisionless stellar
evaporation from elliptical galaxies is an effective mechanism for the production of the
recently discovered intracluster stellar populations (ISP). A preliminary investigation,
based on very idealized galaxy density profiles (Ferrers density distributions), showed
that over an Hubble time, the amount of stars lost by a representative galaxy may sum
up to the 10% of the initial galaxy mass, a fraction in interesting agreement with ob-
servational data. The effectiveness of this mechanism is due to the fact that the galaxy
oscillation periods near equilibrium configurations in the CTF are comparable to stel-
lar orbital times in the external galaxy regions. Here we extend our previous study to
more realistic galaxy density profiles, in particular by adopting a triaxial Hernquist
model.

1 Introduction

Observational evidences of an Intracluster Stellar Population (ISP) are mainly
based on the identification of intergalactic planetary nebulae and red giant stars
(see, e.g., [1],[2],[3],[4],[5]). Overall, the data suggest that approximately 10%
(or even more) of the stellar mass of clusters is contributed by the ISP [6].
The usual scenario assumed to explain the finding above is that gravitational
interactions between cluster galaxies, and interactions between the galaxies with
the gravitational field of the cluster, lead to a substantial stripping of stars from
the galaxies themselves.

Here, supported by a curious coincidence, namely by the fact that the char-
acteristic times of oscillation of a galaxy around its equilibrium position in the
cluster tidal field (CTF) are of the same order of magnitude of the stellar orbital
periods in the external part of the galaxy itself, we explore the effects of interac-
tion between stellar orbits inside the galaxies and the CTF. In fact, based on the
observational evidence that the major axis of cluster Es seems to be preferen-
tially oriented toward the cluster center, N-body simulations showed that model
galaxies tend to align, as observed, reacting to the CTF as rigid bodies [7] .
By assuming this idealized scenario, a stability analysis then showed that this
configuration is of stable equilibrium, and allowed to calculate the oscillation
periods in the linearized regime [8]. In particular, oscillations around two sta-
ble equilibrium configurations have been considered, namely: 1) when the center
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of mass of the galaxy is at rest at center of a triaxial cluster, and the galaxy
inertia ellipsoid is aligned with the CTF principal directions, and 2) when the
galaxy center of mass is placed on a circular orbit in a spherical cluster, and the
galaxy major axis points toward the galaxy center while the galaxy minor axis
is perpendicular to the orbital plane.

Here, prompted by these observational and theoretical considerations, we
extend a very preliminary study of the problem [9], by evolving stellar orbits
in a more realistic galaxy density profile: for simplicity we restrict to case 1)
above, while the full exploration of the parameter space, together with a complete
discussion of case 2), will be given elsewhere [10]. It is clear, however, that both
cases are rather exceptional. Most cluster galaxies neither rest in the cluster
center nor move on circular orbits, but they move on elongated orbits with
very different pericentric and apocentric distances from the cluster’s center; in
a triaxial cluster many orbits are boxes and some orbits can be chaotic. These
latter cases can be properly investigated only by direct numerical simulation of
the stellar motions inside the galaxies, coupled with the numerical integration
of the equations of the motion of the galaxies themselves.

2 The Physical Background

Without loss of generality we assume that in the (inertial) Cartesian coordinate
system C, with the origin on the cluster center, the CTF tensor T is in diagonal
form, with components Ti (i = 1, 2, 3). By using three successive, counterclock-
wise rotations (ϕ around x axis, ϑ around y′ axis and ψ around z′′ axis), the
linearized equations of the motion for the galaxy near the equilibrium configu-
ration can be written as

ϕ̈ =
∆T32∆I32

I1
ϕ, ϑ̈ =

∆T31∆I31
I2

ϑ, ψ̈ =
∆T21∆I21

I3
ψ, (1)

where ∆T is the antisymmetric tensor of components ∆Tij ≡ Ti−Tj , and Ii are
the principal components of the galaxy inertia tensor. In addition, let us also
assume that T1 ≥ T2 ≥ T3 and I1 ≤ I2 ≤ I3, i.e., that ∆T32, ∆T31 and ∆T21
are all less or equal to zero (see, e.g., [8], [10]). Thus, the equilibrium position
associated with (1) is linearly stable, and its solution is

ϕ = ϕM cos(ωϕt), ϑ = ϑM cos(ωϑt), ψ = ψM cos(ωψt), (2)

where

ωϕ =
√
∆T23∆I32

I1
, ωϑ =

√
∆T13∆I31

I2
, ωψ =

√
∆T12∆I21

I3
. (3)

For computational reasons the best reference system in which calculate stellar
orbits is the (non inertial) reference system C ′ in which the galaxy is at rest,
and its inertia tensor is in diagonal form. The equation of the motion for a star
in C ′ is

ẍ′ = RTẍ − 2Ω ∧ v′ − Ω̇ ∧ x′ − Ω ∧ (Ω ∧ x′), (4)
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where x = R(ϕ, ϑ, ψ)x′, and

Ω = (ϕ̇ cosϑ cosψ + ϑ̇ sinψ,−ϕ̇ cosϑ sinψ + ϑ̇ cosψ, ϕ̇ sinϑ+ ψ̇). (5)

In (4)
RTẍ = −∇x′φg + (RTTR)x′, (6)

where φg(x′) is the galactic gravitational potential, ∇x′ is the gradient operator
in C ′, and we used the tidal approximation to obtain the star acceleration due
to the cluster gravitational field.

3 Galaxy and Cluster Models

For simplicity we assume that the galaxy and cluster densities are stratified on
homeoids. In particular, the galaxy density belongs to ellipsoidal generalization
of the widely used γ-models ([11],[12]):

ρg(m) =
Mg

α1α2α3

3 − γ

4π
1

mγ(1 +m)4−γ , (7)

where Mg is the total mass of the galaxy, 0 ≤ γ ≤ 3 and

m2 =
3∑
i=1

(x′
i)

2

α2
i

, α1 ≥ α2 ≥ α3. (8)

The inertia tensor components of a generic homeoidal density distribution
(in the natural reference system adopted in (8)), are given by

Ii =
4π
3
α1α2α3(α2

j + α2
k)hg, (9)

where hg =
∫ ∞
0 ρg(m)m4dm, and so I1 ≤ I2 ≤ I3. Note that, from (3) and (9)

it results that the frequencies for homeoidal stratifications do not depend on the
specific density distribution assumed, but only on the quantities (α1, α2, α3). We
also introduce the two ellipticities

α2

α1
≡ 1 − ε,

α3

α1
≡ 1 − η, (10)

where ε ≤ η ≤ 0.7.
A rough estimate of characteristic stellar orbital times inside m is given by

Porb(m) � 4Pdyn(m) =
√

3π/Gρg(m), where ρg(m) is the mean galaxy density
inside m. We thus obtain

Porb(m) � 9.35 × 106

√
α3

1,1(1 − ε)(1 − η)
Mg,11

mγ/2(1 +m)(3−γ)/2 yrs, (11)

where Mg,11 is the galaxy mass normalized to 1011M�, α1,1 is the galaxy “core”
major axis in kpc units (for the spherically symmetric γ = 1 Hernquist model [13],
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Fig. 1. Distribution of the dmax/di ratio vs. di/α1 after an Hubble time for the model
galaxy at rest. di is the initial distance of the star from the galaxy center, while dmax

is the maximum distance from the galaxy center reached during the simulation.

Re � 1.8α1); thus, in the outskirts of normal galaxies orbital times well exceed
108 or even 109 yrs. For the cluster density profile we assume

ρc(m) =
ρc,0

(1 +m2)2
, (12)

where m is given by an identity similar to (8), with a1 ≥ a2 ≥ a3, and, in
analogy with (10) we define a2/a1 ≡ 1 − µ and a3/a1 ≡ 1 − ν, with µ ≤ ν ≤ 1.
It can be shown (see, e.g., [8],[10]) that the CTF components at the center of a
non-singular homeoidal distribution are given by

Ti = −2πGρc,0wi(µ, ν), (13)

where the dimensionless quantities wi are independent of the specific density
profile, w1 ≤ w2 ≤ w3 for a1 ≥ a2 ≥ a3, and so the conditions for stable
equilibrium in (1) are fulfilled ([8],[10]). The quantity ρc,0 is not a well measured
quantity in real clusters, and for its determination we use the virial theorem,
Mcσ

2
V = −U , where σ2

V is the virial velocity dispersion, that we assume to be
estimated by the observed velocity dispersion of galaxies in the cluster. Thus,
we can now compare the galactic oscillation periods:

Pϕ =
2π
ωϕ

� 8.58 × 108√
(ν − µ)(η − ε)

a1,250

σV,1000
yrs ,

Pϑ =
2π
ωϑ

� 8.58 × 108

√
νη

a1,250

σV,1000
yrs ,

Pψ =
2π
ωψ

� 8.58 × 108

√
µε

a1,250

σV,1000
yrs .
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(for small galaxy and cluster flattenings, where a1,250 = a1/250 kpc and σV,1000 =
σV/103 km/s, [10]) with the characteristic orbital times in galaxies. Thus, from
(11) and (14abc), it follows that in the outer halo of giant Es, stellar orbital
times can be of the same order of magnitude as the oscillatory periods of the
galaxies themselves near their equilibrium position in the CTF. For example, in
a relatively small galaxy of Mg,11 = 0.1 and α1,1 = 1, Porb � 1 Gyr at m � 10
(i.e., at � 5Re), while for a galaxy with Mg,11 = 1 and α1,1 = 3 the same orbital
time characterizes m � 7 (i.e., � 3.5Re).

Fig. 2. Distribution of the dmax/di ratio vs. di/α1 after an Hubble time for the same
galaxy model as in Fig. 1, when oscillating around its equilibrium position in the CTF.

In order to understand the effects of the galaxy oscillations on the stellar
orbits, we performed a set of Monte-Carlo simulations, in which we followed
the evolution of 104 - 105 “1-body problems” over the Hubble time by inte-
grating numerically (4). At variance with [9], where we used simple and easy-
to-integrate Ferrers density profiles, here we study orbital evolution in a more
realistic (but also more demanding from the numerical point of view) galaxy
density profile, namely a triaxial Hernquist model, obtained by assuming γ = 1
in (7). The gravitational potential inside the galaxy density distribution, in
a form suitable for the numerical integration, was obtained by using an ex-
pansion technique useful in case of small density flattenings ([10],[14]). The
initial conditions are generated by using the Von Neumann rejection method
in phase-space (for details see [10]): note that, at variance with the analy-
sis [9], now “stars” are characterized by initial velocities that can be different
from zero. The code, a double-precision fortran code based on a Runge-Kutta
scheme, runs on GRAVITOR, the Geneva Observatory 132 processors Beowulf
cluster (http://obswww.unige.ch/˜pfennige/gravitor/gravitor e.html).
The computation of 104 orbits usually requires 2 hours when using 10 nodes.
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4 Preliminary Results and Conclusions

We show here, as an illustrative case, the behavior of the ratio dmax/di as a
function of di/α1, for a moderately flattened galaxy model (ε � 0.2 and η � 0.3),
with Mg = 1011M�, semi-mayor axis α1 = 3 kpc, and maximum oscillation
angles equals to 0.1 rad. The cluster parameters are a1,250 = σV,1000 = 1, µ = 0.2,
ν = 0.4, and the total number of explored orbits is Ntot = 104. In order to show
the effect of oscillations, in the following simulations we artificially eliminated
the direct contribution of the CTF, as given by the second term in the r.h.s. of
(6).

In Fig. 1 we show the result of a first simulation in which the galaxy is not
oscillating: obviously, the ratio dmax/di is in general (slightly) larger than unity,
due to the initial velocity of each star. In Fig. 2 we show the result for the same
galaxy model, when oscillating around the equilibrium position: the effects of
the galaxy oscillations are clearly visible as a global “expansion” of the galaxy.
As a reference, the solid line indicates the expansion ratio required to reach the
representative distance of 10Re from the galaxy center. Thus, it is clear that the
galaxy oscillations are certainly able to substantially modify the galaxy density
profile. In particular, it will be of interest the study of the (more realistic) case in
which the galaxy is in rotation around the cluster center. In this case we expect
a different behavior of stellar orbits as a function of the distance of the galaxy
center of mass from the cluster center: in fact, while inside the cluster core the
CTF is compressive (see, e.g., [7],[8]), outside the CTF is expansive along the
cluster radial direction, and in this latter case its direct effect should increase
the expansive effect due to the galaxy oscillations. These cases are discussed in
detail in [10].
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Abstract. The effect of solar system chaos on small bodies, such as comets and aster-
oids, is quite different from that experienced by the major planets. It is more obvious
in the motion of the large number of small bodies in the planetary region. Thus, the
existence of different groups of comets and asteroids is due to the different qualities of
the various resonances – mean motion resonances, secular resonances and three-body
resonances – but especially because of resonance overlap. Moreover, chaotic motion has
also been found in the motion of the planets and appears to be present on even a larger
level in extra-solar planetary systems.

1 Introduction

When dealing with the celestial mechanics of solar system bodies we have to be
aware that there is a fundamental difference from galactic dynamics even though
the governing physical laws – primarily gravitation and also in special cases
relativity – are the same. We can directly observe the motion of solar system
bodies on time scales as short as years, months and even days. Furthermore,
there is one special planetary system we are dealing with although now we have
knowledge of about 100 extrasolar planets. For these systems the observational
conditions are very different from observations in our planetary environment.
In galactic dynamics we cannot observe directly the motion, for centuries the
picture does not change for the observer on the Earth; we thus have a “snapshot”
of the dynamics of our galaxy. On the contrary we have observations of galaxies
in different stages of their age and can therefore deduce information on the
dynamics of our own Galaxy. Furthermore, although a galaxy consists of billions
of stars, we can treat their motions in the corresponding galactic potential as a
motion in a “simple” Hamiltonian using an averaged gravitational potential. In
solar system dynamics we have to deal with an n-body system where n is small
(depending on the number of planets we wish to take into account). As we will
see in this text the model of an n-body system has the advantage that it can be
treated as an integrable dynamical system (namely the Keplerian motion of any
body around the Sun, for a satellite around the parent planet) perturbed by the
other bodies with significantly smaller masses than the Sun.

There are very good recent reviews on this subject ([15], [17]) which point
out quite well the fundamental rôle of chaos in the dynamics of the solar system.
In the present text we will, besides repeating more or less the fundamental ideas
given in these two papers, critically give light to some of the results presented
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therein and report on new results concerning the rapidly increasing number of
dynamical studies of extrasolar planetary systems.

One of the fundamental questions of astrodynamics is whether the solar sys-
tems is stable or not. Perturbation theory cannot give a final answer because of
the limited time scales over which such theories are valid. It is also clear that
straightforward numerical integration of the equations of motion cannot give a
definitive answer because the inevitable accumulation errors lead to a deviation
of the computed orbits from the “real” ones. An additional point of weakness
is the incomplete dynamical model, which cannot perfectly represent the “real”
solar system, even when all known effects, such as the gravitational forces of the
largest minor planets 1, the oblateness of the Sun and the planets, the galactic
field and the relativistic effects are included. Additionally there exists an intrin-
sic effect in nonlinear dynamical systems which makes the solutions uncertain
owing to extreme sensitivity with respect to the initial conditions, known to
physicists as deterministic chaos. This was pointed out for galactic dynamics
in the seminal paper of Hénon and Heiles [9] and was found later through the
work of Wisdom in the chaotic motion of asteroids near the 3:1 resonance with
Jupiter [25].

The following sections are devoted to basic considerations of the dynamics
of an n-body system with a dominating central mass, the appearance of chaotic
motion due to the nonlinearity of the equations of motion and the action of
different kinds of resonances, the motion of comets and asteroids, the long-term
evolution of the orbits of the planets and the special orbit of Mercury. The
conclusion summarizes the rôle of chaotic motion in solar systems dynamics. In
an epilog some interesting results for extrasolar planetary systems are presented
and show how our own system may serve as a “toy model” for planetary systems.

2 The n-Body Solar System

In heliocentric coordinates the equations of motion for the planets (modelled as
mass points mi) may be written as

q̈i = k2


−m1 + mi

r3
i

qi +
n∑

j=2,j �=i

mj(
qj − qi

r3
ji

− qj

r3
j
)


 . (1)

Here the first term describes two-body motion around the Sun, and the second
term is a small perturbing acceleration due to the presence of the other planets
(with masses mj of the order of 10−3 to 10−7 of the Sun’s dominating mass). The
appearance of the 3rd power of the distances | qj − qi |= rji in the denominator
may cause large accelerations, even though the masses of the planets are small,
when these distances become small themselves. In planetary theories this is not
a practical problem because planets move on well separated orbits. It is different
1 which are in fact taken into account for computing short time ephemerides of the

planets
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for comets, which often come quite close to planets (especially Jupiter) which can
change their orbits significantly. Consequently comets having initially parabolic
orbits may end up on elliptic orbits with moderate eccentricities. Besides the
step-by-step numerical integration method (e.g. with a classical Runge-Kutta
or a Lie series method [8]) a special method of solving the equations of motion
has been developed in the last centuries by mathematicians and astronomers
(Lagrange, Laplace, Brown, etc.). In perturbation theory one works with com-
plicated series expansions including perhaps thousands of terms. The solutions
are such that substituting the time in the series (also in form of a Fourier series)
immediately yields the position in space (and in the sky). This method will be
discussed briefly, as it gives deep insights into the nature of the dynamics of the
planetary system and reveals the fundamental rôle of resonances.

2.1 Outline of the Classical Perturbation Method

For an approximate solution of the orbit of a planet the theory of two-body-
motion can be applied which leads to six constants known as the orbital elements
of a planet σ = (a, e, i, ω, Ω, T )T . Under the attraction of the other planets
these elements change slowly in time; because the other masses are orders of
magnitudes smaller than the Sun these changes are small. One can thus describe
the motion of the planet i by a 1st order differential equation of the form

dσi

dt
=

n∑
j=1,j �=i

Fij(σi, σj,
∂Rij

∂σi
) (2)

where Rij is the so-called perturbing function, which can be written as a Fourier-
series with respect to the time. For a single planet of mass m1 perturbed by
another planet with mass m2 the perturbing function is the following

R12 = m2

∞∑
j1=−∞

∞∑
j2=−∞

Cj1,j2 cos[(j1n1 + j2n2)t + Dj1,j2 ]. (3)

The perturbations of the other planets may just be added, leading to a perturbing
function R1 = R12 + R13 + . . . + R1n depending on the number of planets taken
into account; this simplification holds only in a first order theory. In a rather
comprehensive formulation the Delaunay elements can be used

L1 = κ1
√

a l1 = M1 = n1t

G1 = L1
√

(1 − e2) g1 = ω1

H1 = G1 cos i h1 = Ω1 (4)

where κ1 = k
√

m1 + M , M is the mass of the Sun and n1 stands for the mean
motion 2. Each canonical pair obeys the canonical equations

dΓ 1

dt
=

∂R12

∂γ1
,

dγ1

dt
= −∂R12

∂Γ 1
(5)

2 which relates to the semimajor axes a1 via the 3rd Kepler law n2a3 = κ2
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where Γ 1 = (L1, H1, G1)T has the conjugate vector γ1 = (l1, h1, g1)T. As an
example we now show how the perturbations act on the Delaunay element H1.
To derive the respective perturbations of the first order we need to compute
δH1 =

∫
∂R12
∂h1

dt. Inserting the perturbing function (3) one can construct the
partial derivative with respect to the conjugate variable

δH1 = m2

∫ ∞∑
j1=−∞

∞∑
j2=−∞

∂Cj1,j2

∂h1
cos[(j1n1 + j2n2)t + Dj1,j2 ]dt, (6)

which integrates to

δH1 = m2

∞∑
j1=−∞

∞∑
j2=−∞

∂Cj1,j2

∂h1

sin[(j1n1 + j2n2)t + Dj1,j2 ]
(j1n1 + j2n2)

(7)

and hence so-called small divisors appear. Note that the Cj1,j2 depend only on
the action variables Γ and the Dj1,j2 only on the angle variables γ. Whenever the
two mean motions involved, n1 and n2, are in resonance, the small divisor – being
a number close to zero – makes the perturbation for that element very large. A
good example is the great inequality between Jupiter and Saturn. The two giant
planets are in the mean motion resonance 5:2 which means that 2njup−5nsat ∼ 0
for the summation indices j1 = 2 and j2 = 5. Inserting the values of the mean
motions for Jupiter and Saturn one gets in degrees per day 2 · 0.o08309 − 5 ·
0.o03346 = −0.o00112 and thus for the great inequality a period of ∼ 880 years.
A more detailed computation shows that the amplitude of this perturbation in
longitude reaches values up to almost 0.o5 for Jupiter due to Saturn (and vice
versa for Saturn due to the perturbation of Jupiter almost 1o)3.

2.2 High Order Resonances, Secular Resonances
and the Fundamental Frequencies

In the summation of the Fourier expansion of the perturbing function only a
finite number of terms for j1 and j2 are to be taken into account, because beyond
these terms the amplitudes are rather small even for “small divisors”. The main
point is, that it is known since Poincaré [23], that the series expansion of the
perturbation function is not convergent for high orders and has to be truncated
at some point. Nevertheless high order resonances (like j1 = 29 and j2 = −72
for Jupiter and Saturn) or secular resonances (see below) may appear inside the
main resonance and occasionally produce chaotic motion, due to overlapping
separatrix layers for larger eccentricities. This is less important for planetary
motion than for the motion of the asteroids. Of special interest for the stability
of the planetary system are long-period perturbations, which can be computed
by averaging over the fast variable l = M = nt. The system described in (5) then
decouples into two sets of equations, where one involves only the eccentricity and
3 The necessary double integration for the element l1 leads to a divisor of the form

(j1n1 + j2n2)2 and makes the perturbation especially large.
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the perihelion, while the other involves only inclinations and nodes (there are no
equations for L and l). The solutions of the so–called Lagrange system describe
the motion of the nodes and the perihelia of the orbits. The determination of the
secular frequencies is of great interest in connection with the chaotic behaviour
of the planetary system (see Sect. 4.2).

When one takes into account that the nodes and the perihelia of the orbits
change slowly with time (ω = ωo + ω1t and Ω = Ωo + Ω1t) the aforementioned
“phase coefficient” in (3) becomes also time dependant. Therefore, in the inte-
gration of the secular evolution another small divisor, (e.g. j1ω1 +j2ω2 ≈ 0) may
appear which leads again to strong perturbations due to a secular resonance.

In the so–called Kozai resonance [12] the eccentricities and the inclinations
of small bodies perturbed by the planets are coupled in the sense that the ec-
centricity of the orbit has a maximum when the inclination has a minimum and
vice-versa. This can be explained by the fact that for a constant semimajor axis
a the Delaunay element H = κ

√
a(1 − e2) cos i is a constant of motion (e.g.

[20]).
The recently discovered three-body mean motion resonances take into account

in the series expansion (3) the mean motions of the perturbed body and two
perturbing planets (j1n1 + j2n2 + j3n3 ≈ 0), and seem to act especially in the
motion of asteroids [20]. Without going into the details we point out that overlap
of these resonances can lead to chaotic motion (for an extensive description see
[4]).

3 Dynamics of Comets and Asteroids

Our solar system is populated by a large number of small bodies orbiting the
Sun in more or less eccentric orbits. The distinction between the two physically
different populations – the comets and the asteroids – is already evident because
of the different apparition for the observer on Earth. We can divide the comets,
according to their orbits, into short–period comets with orbital periods smaller
than 200 years and the long–period ones. The latter very probably come from
the Oort Cloud, where on the order of 108 comets may be present with aphelion
distances up to 0.4 pc. Their hyperbolic orbits, which are not confined to small
inclinations, led them to the inner part of the solar system due to perturbations
from passing stars, interstellar clouds and galactic tides. Within the group of
short–period comets4 we can distinguish the Jupiter family with periods less
than that of Jupiter and the ones with orbits similar to that of comet Halley
5. The orbital inclinations of comets of the Jupiter family are small and most
of them are supposed to come from the second reservoir for comets, the Edge-
worth-Kuiper belt outside Neptune’s orbit. The orbits of short-period comets are
often deformed due to close encounters with planets, particularly with Jupiter.
4 we now know about 150 of this group
5 with the orbital elements a = 17.94 AU, e = 0.967, i = 162.o2, ω = 112o, Ω = 58.o1

and T = 1986 02 19.0
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These close encounters can be modeled via scattering and are the source of un-
predictability of the orbit for longer time intervals. Using numerical integrations
of real and fictitious objects [5] and simplified mapping methods [3] the statisti-
cal properties for these encounters were determined and the respective Poincaré
surfaces of sections unveiled the chaotic structure of these orbits. In Fig. 1 we
see the orbits of comet Halley for two slightly different initial conditions, which
lead, after several close approaches to Jupiter, to completely different dynamical
behavior. Whereas the upper orbit leads to hyperbolic escape after 2.105 years,
the lower orbit shows the typical character of jumping from one mean motion res-
onance with Jupiter to another. In the lowest graph we can see that the comet’s
orbit is in the Kozai resonance, where the inclination and the eccentricity move
oppositely (well visible especially between 170 and 190 kyrs).

We can also estimate dynamical lifetimes of these objects [19], which are on
the order of 106 years. This lifetime is determined by: (i) collision with a planet
(e.g. crash of SL9 on Jupiter in 1994), (ii) breakup in a sun-grazing encounter
or (iii) escape from the solar system after a close encounter with a giant planet.
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For the asteroids we can distinguish 4 different groups6 (i) the Edgeworth-
Kuiper-Objects (KBO, moving outside Neptune) (ii) the cloud of Jupiter Trojans
(moving close to the Lagrange equilibrium points L4 and L5), (iii) the main belt
asteroids (with semimajor axes between Mars and Jupiter) and (iv) the Near
Earth Asteroids (NEAs), with orbits which bring them close to the Earth. Only
the Trojans form a well defined group, the other ones are not so well separated,
respectively they change their membership to a specific group.

The members of the NEAs are usually divided into three subgroups: the
ATENS, with a semimajor axis smaller than that of the Earth and an aphelion
distance Q = a(1 + e) > 0.983 AU (mean perihelion distance of Earth), the
APOLLOS, with a semimajor axis larger than that of the Earth and a perihelion
distance q = a(1 − e) < 1.017 AU (mean aphelion distance of Earth) and the
AMORS, with a semimajor axis larger than that of the Earth and a perihelion
distance 1.017 < q < 1.3 AU (they do not cross Earth’s orbit, but they stay
inside the orbit of Mars)

The number of known asteroids is growing rapidly because during the ob-
serving programs of the NEAs more and more small and also large objects7 are
discovered. The actual numbers of asteroids in addition to the ≈ 20000 main
belt asteroids – are Atens (172), Apollos (1043), Amors (1013), Centaurs (125),
Jupiter Trojans around the preceding Lagrange point L4 (962), L5 (602) and
KBOs (664).

In Fig. 2 one can see the sculpting of the main belt inside Jupiter’s orbit which
is mainly due to mean-motion resonances, as well as three-body resonances and
secular resonances (inner main belt) and also by the chaotic behavior of sepa-
ratrix crossing (e.g. 3:1 mean motion resonance). We can order the importance
of the acting resonances [22] as follows: (1) three–body resonances with Jupiter
and Saturn, (2) resonances with Mars, (3) mean motion resonances with Jupiter,
and (4) three–body resonances involving both Mars and Jupiter. In the inner
part of the main belt Mars is – besides the secular resonances with Jupiter and
Saturn [21] – an important perturbing planet; the relatively large eccentricity
of its orbit compensates for its small mass. The middle part 2.5 ≤ a ≤ 3 AU is
the most stable one. In the outer belt Jupiter is acting with its resonances and
sub–resonances.

An important step further in the knowledge of solar system dynamics oc-
curred, when Wisdom [25] discovered that the depletion of the main belt in the
3:1 mean motion resonance with Jupiter is caused by the chaotic behaviour of
asteroids located there. The asteroid suffers from a sudden increase in the ec-
centricity which may bring it into a resonance overlap area, which in turn leads
to an additional increase in eccentricity and finally to a close approach with
Mars. This process of separatrix crossing is a basically chaotic behavior known
6 we exclude the Centaurs as a group which are asteroids outside Jupiter but inside

the 3:2 resonance with Neptune
7 Quaoar, a recently discovered KBO, has a semimajor axis a=43.4 AU, an eccentricity

of e=0.03 and a diameter of 1250km (which is half the size of Pluto).
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from the perturbed pendulum, where the qualitative change from libration to
circulation is due to the sensitivity on the initial conditions.

The riddle of the different dynamical behaviour of the 2:1 resonance, which is
almost depleted from planetoids, and the 3:2 Hilda family of asteroids has been
solved recently by the work of different authors (e.g. Ferraz-Mello and Nesvorny
[6]) and is primarily due to an early depletion of asteroids in the 2:1 resonance
because of the different location of Jupiter and Saturn in the early days of the
solar system, where they were somewhat closer. A detailed description of the
structure of these two resonances can be found in the previously mentioned
book by Morbidelli [20] (p. 286–294).

In Fig. 3 one can see how a NEA jumps from one mean motion resonance
with the Earth to another (upper panel), which is caused by more or less close
encounters with this planet (lower panel). The detailed transport of asteroids
from the Kuiper belt to the Centaurs and from there to the inner regions of
the solar system as well as the transport from the main belt to Earth–crossing
orbits, is governed mainly by secular resonances [24].

4 The Planets

The problem of the stability of our planetary system was first studied by Laplace
in the 18th century, who found that the semimajor axes of the planets suffer
only periodic changes up to the first order; 50 years later Poisson extended
this theorem up to second order. As already mentioned Poincaré [23] discovered
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Fig. 3. The jumping orbit of 2262 Aten

that the usual perturbation techniques used to represent the solution in form of
power series in small parameters such as the eccentricities, inclinations and/or
the planetary masses are not convergent, because of small divisors. Using the
method of averaging over the mean motions of the planets (and thus not being
able to determine the longitude of the planet) one can solve the secular part of
the perturbing function. To lower orders one can find good approximations to the
solutions because the system decouples into an inclination–node independent and
an eccentricity–perihelion independent system. For a qualitatively good solution
over millions of years one can introduce high order terms which result in a shifting
of the proper mode frequencies and combinations of them [1]. Using numerical
techniques we can nowadays – with the aid of very fast computers – integrate
the full equations of motion up for times scales comparable to the age of the
solar system [10].

4.1 Numerical Solutions

We have integrated the full equations of motion for a time interval of 200 million
years (±100 million years) for a dynamical model consisting of the Sun and 8
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Fig. 4. Semimajor axis, eccentricity and inclination of Mercury for 200 million years

planets (treated as point masses, Earth + Moon as one body, relativistic effects
added afterwards) with the Lie series method ([18], [8]). In Fig. 4 one can see the
relative large variations in the eccentricity and inclination for Mercury, while the
semimajor axis is very constant even for such a long integration. These results
illustrate the precision of the method because the first sign of the lack of precision
of an integration is a secular drift of the semimajor axes of the innermost planet
in a simulation of the motion of the planetary system [7].

The coupling between Earth and Venus, which have almost the same mass,
is visible in Fig. 5. We show – besides the time interval -2.5 to +2.5 million years
around today – the time evolution of their eccentricities for 5 million years in
the past and in the future. It is remarkable that no differences at all can be seen
there!

For the interval of 200 million years the minimum and maximum values of
the semi-major axes, the eccentricities and the inclinations of the planets are
shown in Table 1.

4.2 Determination of the Fundamental Frequencies

The analysis of the data to determine the so-called fundamental frequencies (the
motion of the nodes and of the longitudes of the perihelia) was done using a
program provided by [2] which uses a Chebycheff approximation of the data,
determines the largest amplitude, subtracts it and repeats the analysis (etc.)
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Table 1. Extreme values of the action variables for 2.108 years

planet amin amax emin emax imin imax

Mercury 0.38710 0.38710 0.07874 0.29988 0.17600 11.72747

Venus 0.72332 0.72336 0.00002 0.07709 0.00076 4.91515

Earth 0.99997 1.00004 0.00002 0.06753 0.00075 4.49496

Mars 1.52354 1.52386 0.00008 0.13110 0.00291 8.60320

Jupiter 5.20122 5.20504 0.02513 0.06191 1.09172 2.06598

Saturn 9.51281 9.59281 0.00742 0.08959 0.55867 2.60187

Uranus 19.09807 19.33511 0.00008 0.07835 0.42170 2.73888

Neptune 29.91013 30.32452 0.00001 0.02317 0.77977 2.38597

This new determination ([7]) is compared to the values published by previous
authors in Table 2. One can see that these frequencies are quite close to the
already published ones using other methods.

Laskar [13] used a different approach to model the long term evolution of the
planetary orbits: he integrated numerically the secular system, (truncated up to
2nd order in the masses and to 5th order with respect to the eccentricities and
the inclinations). The surprising result was the discovery that a secular resonant
term, namely θ = 2( ˙˜Mω − ˙̃Eω) − (Ω̇M − Ω̇E), where E stands for the Earth
and M stands for Mars, is alternatively librating and circulating [15]. This clear
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Table 2. Fundamental frequencies for the motion of the perihelion in ′′ per year after
the Lagrange-Laplace theory (LLT), the theory of Bretagnon (B84) [1], the theory of
Laskar (NGT) [14] and a new determination (NEW)

LLT B84 NGT NEW

g1 5.4633 5.6136 5.5689 5.6276

g2 7.3477 7.4559 7.4555 7.4441

g3 17.3283 17.2852 17.3769 17.5668

g4 18.0023 17.9025 17.9217 17.9373

g5 4.2959 4.3080 4.2489 4.2567

g6 27.7741 28.1483 27.9606 28.2445

g7 2.7193 3.1534 3.0695 3.0468

g8 0.6333 0.6735 0.6669 0.6727

indication of chaos does not a priori mean that the planetary system will be
unstable. Nevertheless these important results show that the orbital elements of
the planetary system – especially the terrestrial planets – lie in a thin chaotic
layer in phase space.

In a further step Laskar [14] numerically integrated the averaged equations
of motion over even longer time scales (several 109 years with a time step of 250
years for this integration). The most interesting results are shown in Fig. 6 where
the development of the eccentricities of the innermost three planets, respectively
the maximum and minimum value over a time span of some billion years is
plotted. The two lines on the bottom with quite a similar behaviour belong to
Venus (respectively to the Earth) and show the dynamical coupling of these two
planets. For Mercury we see a line of minimum values and a line of maximum

Fig. 6. Evolution of the eccentricities of Venus, Earth and Mercury from -6.6 Gyrs to
3.5 Gyrs (after [15])
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values which are parallel (separated by ∆e ∼ 0.15) over the whole time span
of 1010 years. The most interesting fact is that Mercury’s orbit seems to be
able to achieve values of e close to unity! Laskar concludes that this could lead
(in the future, because the system is symmetric with respect to the time) to a
close encounter with Venus. The most important point of criticism is that the
development of the perturbation function is not convergent for large inclinations
and eccentricities! Thus the solution which he computes does not describe the
dynamical development of the planetary system. Nevertheless Laskar argues that
the secular system, which keeps the semimajor axes of the planets constant,
is even less chaotic than the real one and additional degrees of freedom“ will
probably lead to even stronger chaotic behaviour, as in general, addition of
degrees of freedom increase the stochasticity of the motion” ([15]).

Because of the shortcomings in the equations of motions these computations
cannot give a conclusive answer to the question of the stability of the planetary
system, but there is no doubt that the motion of the planets is NOT regular
(and not quasiperiodic). This fact is mainly due to Mercury and Mars in the
inner solar system; Earth and Venus are strongly coupled in their dynamical
behaviour and the outer planets show regular behaviour in their motions (with
the exception of Pluto, which is a Kuiper belt object moving in a 2:3 resonance
with Neptune).

The results discussed in this chapter raise several questions:
• is the sudden increase of Mercury’s orbital eccentricity (in short time scales

of 105 − 106 years, compare Fig. 6) due to the shortcomings of the equations of
motions, or is it a real phenomenon?

• what is Mercury’s action on the other planets when its orbit is highly
eccentric?

• what is the possible outcome of a close encounter between Mercury and
Venus?

To clarify this question we have undertaken numerical integrations of the
full equations of motion in different models: only the inner planets, the inner
planets plus Jupiter, the inner planets plus Jupiter and Saturn and the complete
planetary system.

4.3 Mercury as Perturber of the Inner System

Figure 7 shows the evolution of the eccentricity of Mercury for 1 million years,
starting with a large eccentricity eini = 0.95 in 2 different models, namely with
and without Jupiter: in the first model after only 105 years the eccentricity
can drop from 0.95 to 0.6 and then rise again (upper panel)! Thus the result
of Laskar is confirmed that a “sudden” increase of Mercury’s eccentricity is
a possible scenario. On the lower panel of Fig. 7 we depict the behaviour in
a model with Jupiter, and here one can see that, although a close encounter
occurred, the eccentricity of Mercury did not drop below e = 0.75. Other test
calculations confirm the result, that the outer planetary system stabilizes the
inner one (a longer paper with computations for different dynamical models is
in preparation). In all our computations the consequences of close encounters
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between Venus and Mercury never resulted in an escape, but only in a small
change in the semimajor axis. We therefore conclude that escape can only happen
after several cascade–like encounters, and then it may be that Jupiter could
throw Mercury far out into the Kuiper belt! Regarding the action of the unstable
orbit of Mercury on the other planets, it turned out that the influence is small,
owing to the small mass of this planet. Only an unlikely close encounter of
Mercury (or quasi–collision, which in fact we observed in one of our experiments)
could lead to larger changes of the orbital elements.

4.4 The Obliquity of Planets

The results of an investigation of the obliquities [16] of the planets were quite sur-
prising: with one exception all inner planets are – in what concerns the obliquity
of their rotation axes – in a mode of chaos. That means that within relatively
short time scales of millions of years their axes can vary substantially in space.
For Mars the amplitude of this chaotic development of the obliquity is 15o within
some hundred thousand years and in 50 million years it may gradually evolve
from almost 60o to 15o. At the same time the precession rates also vary by a
factor of two. Although Venus now possesses an orientation of the rotational axis
very close to that of our Earth, the obliquity could reach a value close to 90o and
therefore it would almost “roll” in its orbital plane (like Uranus is actually doing
it). For the Earth the situation is quite different: in an 18 Myrs integrations of
the precession equations it was found that the precession rate can change to a
negative precession of p = −39′′/yr. The actual values for the Earth of εo = 23o

and p = 50′′/yr lie well inside a quiet region with only very small changes for the
maximum and minimum values. For 55o < ε < 90o there exist a large chaotic
region allowing variations in the order of 35o. The same integrations were un-
dertaken without the presence of the Moon and the obliquity turned out to lie
in a region of large chaos (such as Mars is actually in). Thus it seems that only
the presence of the Moon stabilizes the obliquity so that only small changes in
ε occur and occurred in the last millions of years!

5 Conclusions

Let us summarize the most interesting manifestation of chaos in our planetary
system:

• all small bodies in our solar system – asteroids and comets – suffer from
chaotic motion either directly due to close encounters or after long term evolu-
tions

• there is a thin layer of chaos in phase space, where the inner planets move
• on a long time scale diffusion may bring the planets into a state of larger

chaos which may allow for large eccentricities of Mercury. The scenario which
follows then is still not known and seems to be more speculation than outcome
of scientific investigations; at any rate an immediate escape of a planet does not
seem possible. A snowball like effect is more probable, where Mercury changes
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Venus’ orbit, Venus comes close to the Earth and changes its orbit, the Earth
itself is then perturbing Mars, which now may achieve larger eccentricities . . .

• Jupiter and Saturn keep the inner planets in stable orbits for quite long
times

• large changes in the orientation of the obliquity of the planets are possible
due to chaotic motion of the inner planets. On the contrary the Earth’s spin
axis is stabilized by the Moon which turns out to be in a nonchaotic region of
configuration space.

6 Epilog

The knowledge of more than 100 planets orbiting other stars has opened new
interest for the dynamics of our own planetary system, where it is difficult to
detect the weak chaoticity the planetary orbits are in. This is different for ex-
trasolar planets: in a recent work it was found that the planets in HD12661 are
apparently in a chaotic region of phase space [11]. In Fig. 8a we show the time
evolution of the semimajor axis of the inner planet, where it jumps from one high
order mean motion resonance to another close by. In numerical experiments of
the dynamical evolution of our planetary system with fictitious larger masses of
the terrestrial planets a similar behaviour was found (Fig. 8b): taking for Mars
the mass of the Earth leads to a chaotic behaviour of the semimajor axis of the

0.82

0.821

0.822

0.823

0.824

0.825

0 200 400 600 800 1000

se
m

im
aj

or
 a

xi
s 

of
 th

e 
H

D
12

66
1b

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001

1.0002

0 200 400 600 800 1000

se
m

im
aj

or
 a

xi
s 

of
 th

e 
E

ar
th

Time in thousand years

Fig. 8. Time evolution for 1 million years of the semimajor axis of the inner planet
of HD12661 (upper panel) and of the Earth (in a model with a fictitious mars with 10
time its actual mass) (lower panel)



Chaos in Solar System Dynamics 411

Earth (the masses of the other planets were unchanged). Because we can expect
many more discoveries of planets even with masses comparable to our terrestrial
planets in the future, the knowledge of our own system is a basis for the future
research in the dynamics of other planetary systems.
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Dynamics of Extrasolar Planetary Systems:
2/1 Resonant Motion

John D. Hadjidemetriou and Dionyssia Psychoyos
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Abstract. A systematic study of the dynamics of resonant planetary systems is made,
based on the existence and stability character of families of periodic orbits of the
planetary type. In the present study we consider planetary systems with two planets,
moving in the same plane. We explore the whole phase space close to the 2/1 resonance,
for the masses of the observed planetary system HD82943. We find four basic resonant
families of periodic orbits at the 2/1 resonance, and show that large regions on the
families correspond to stable motion, even for large values of the eccentricities of the
two planets and for intersecting planetary orbits. The initial phase of the two planets
plays a crucial role on the stability of the system. It is close to a periodic orbit that
stable motion of a planetary system can exist. So, the study of the families of periodic
orbits provides a systematic way to find all the regions of phase space where a resonant
planetary system could exist in nature. Planetary systems with large eccentricities can
exist in nature only if they are close to a resonance. Indeed, we show that the real
planetary system HD82943 is close to a stable periodic orbit. The alignment of the line
of apsides of the planetary orbits plays also a stabilizing role.

1 Introduction

The study of extrasolar planetary systems is an important new field of research
in dynamical astronomy, following the discovery during the last decade of plane-
tary systems around distant stars. A complete catalogue of extrasolar planetary
systems can be found in the web site http://www.obspm.fr/encycl/catalog.html,
maintained by Jean Schneider. There are 91 confirmed extrasolar planetary sys-
tems, with ten of them having two planets and two having three planets. In some
cases, the eccentricities of the two planets are quite large, and their masses are
comparable to the mass of Jupiter. In all these cases, the two planetary orbits
are in a mean motion resonance.

There are several problems associated with the extrasolar planetary systems.
First are the cosmogonic problems: how were these systems formed? Another
problem is the stability of such systems. What makes them stay there, for mil-
lions or billions of years? These systems are very different from our own solar
system, because the planetary eccentricities are large, but they do exist in nature.
What mechanism keeps them stable? A third question refers to the possibility of
existence of life is an extrasolar planetary system. This implies the existence of
Earth-like planets, i.e. planets of the size of the Earth, in nearly circular orbits
at a distance of about 1AU from the Sun. The observational techniques at the
moment are not so accurate and consequently such planets cannot be observed.

G. Contopoulos and N. Voglis (Eds.): LNP 626, pp. 412–432, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Only larger planets are detected at present. But knowing the position of the
larger planets, we can study the stability of a fictitious small planet at about
1AU, and thus find if such a planet could possibly exist. A study on this problem
is in Celletti et al. (2002), Jones and Sleep (2002).

In this paper we address the problem of the stability of an extrasolar plane-
tary system. There are several studies on the stability of the observed extrasolar
planetary systems, based on numerical integrations, starting with initial condi-
tions close to those corresponding to the observed values: (Beauge et al. 2003,
Callegari et al. 2002, Ferraz-Mello 2002, Ford et al. 2001, Gozdziewski et. al.
2002, Kinoshita and Nakai 2001a,b, Kiseleva et.al. 2002, Laughlin and Cham-
bers 2001, Lissauer and Rivera 2001, Malhotra 2002a,b, Murray et al, 2001, Peale
and Lee 2002, Rivera and Lissauer 2001). In the present study we propose a new
approach to detect stable motion. A systematic method is presented, based on
periodic orbits, to find all the regions of the phase space where stable motion ex-
ists and consequently a real planetary system could be found in nature. A study
on the dynamics, based on families of periodic orbits, is made in Hadjidemetriou
(2002), for the 2/1 and 3/2 resonant systems.

We consider an extrasolar planetary system with two planets, moving in the
same plane, taking into account the gravitational attraction between the two
planets. This is a special case of the general planar three body problem. The
study is based on the existence of periodic orbits in a rotating, synodic, frame,
because it is the periodic orbits and their stability character, that determine
critically the structure of the phase space. So, the knowledge of all the basic
families of periodic orbits in a dynamical system will provide useful information
on the evolution of the system. In particular, the position of the stable periodic
orbits in phase space gives a systematic way to find those regions where stable
motion can exist. This is so, because it is only close to a stable periodic motion
where a real planetary system can exist. In this way, we are able to find all the
resonant planetary systems that could exist in nature.

As we shall explain in the next section, there are two types of periodic orbits
of the planetary type (in the rotating frame): Periodic orbits where the two
planets move in circular orbits and periodic orbits where the two planets move
in elliptic orbits (slightly distorted due to the gravitational interaction between
the two planets). These latter periodic orbits are necessarily resonant, i.e. the
ratio of the periods of revolution of the two planets is a rational number. The
eccentricities of the two planets vary along such a resonant family of periodic
orbits, starting from zero values and reaching high values, while the semimajor
axes remain almost constant.

An extrasolar planetary system, even with large masses and eccentricities, can
be stable, provided that it is close to a stable resonant periodic orbit. Indeed,
all the extrasolar planetary systems with large eccentricities that have been
observed, are close to a resonance. In particular, we study the 2/1 resonant
case, and we find that stable families of resonant periodic orbits exist, with
large eccentricities of the planets. As a model system we consider the observed
extrasolar planetary system HD82943. In this system two planets have been
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observed (Israelinian et al. 2001): The masses of the two planets, expressed in
Jupiter masses, are m1 sin i = 0.88J, m2 sin i = 1.63J , the semimajor axes are
a1 = 0.73AU, a2 = 1.16AU, their periods are T1 = 221.6d, T2 = 444.6d, their
eccentricities are e1 = 0.54, e2 = 0.41 and the mass of the sun is msun = 1.05
solar masses. We clearly see that this is a resonant planetary system, with 2/1
mean motion resonance of the planets, T2/T1 = 2.006.

We computed four basic families of 2/1 resonant periodic orbits, for the
masses of the above system. Along each of these families the eccentricities of
the two planets increase, starting with almost zero values, while the semimajor
axes remain almost constant, corresponding to the 2/1 resonance. Large stable
regions exist, even for large values of the two eccentricities. It is close to these
stable periodic orbits that we should look for real planetary systems, because
these are the only regions of phase space where bounded motion could exist.
The exploration of the phase space close to a periodic orbit is made by studying
perturbed orbits, by the method of Poincaré surface of section. It is shown that
the phase (relative position of the two planets in their orbits) plays a crucial role
on the stability of the system, and that for the same resonance and the same
eccentricities chaotic motion appears, if the initial phase is changed, resulting to
a quick disruption of the planetary system. On the other hand, a phase protection
mechanism appears for suitable initial phase of the two planets, close to a stable
periodic orbit, resulting to stable, ordered, motion.

2 Families of Periodic Orbits

2.1 Periodic Orbits in the Rotating Frame

As we mentioned above, the motion of an extrasolar planetary system is a special
case of the general three body problem. We consider here the planar case. The
best way to study this problem is to consider a rotating frame of reference
(Hadjidemetriou 1975). This rotating frame is defined as follows:

Let us consider three bodies (point masses), S, P1 and P2, with masses m0,
m1 and m2, respectively, moving in the same plane under their mutual gravita-
tional attraction. We define a rotating frame of reference, xOy, whose x axis is
the line S P1, and the origin O is the center of mass of these two bodies. The y
axis is perpendicular to the x axis, in the plane of motion. The body P1 moves
on the x axis and the body P2 moves in the xOy plane. This is a non uniformly
rotating frame and the position of the three bodies are defined by the coordinate
x1 of P1 on the x axis, the coordinates x2, y2 of P2 on the xOy plane and the
angle θ of the rotating x axis with a fixed direction in the inertial frame (where
the center of mass of the system of the three bodies is at rest). We have four
degrees of freedom, but it turns out (Hadjidemetriou 1975) that the angle θ is
ignorable, so we are left with three degrees of freedom in the rotating frame.

The initial conditions defining the motion of the three bodies in the rotating
frame are: x10, x20, y20, ẋ10, ẋ20, ẏ20. Two more initial conditions are needed
to completely define the motion in space: θ0 and θ̇0. The value of θ̇0 determines
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the angular momentum L, which appears as a fixed parameter in the differen-
tial equations of motion in the xOy frame. The value of θ0 defines the initial
orientation of the rotating frame and does not affect the motion. So, in order to
study the motion in the rotating frame, we need the initial conditions x10, x20,
y20, ẋ10, ẋ20, ẏ20 and the angular momentum L.

It can be proved that periodic orbits of the three body system exist in the
rotating frame defined above (Hadjidemetriou 1975). Note that periodicity on
the rotating frame means that the relative configuration of the three bodies is
repeated after one period. The system is not, in general, periodic in the inertial
frame.

It is proved (Hadjidemetriou 1976) that the periodic orbits in the rotating
frame are not isolated, but belong to monoparametric families of periodic orbits,
along which all the masses are fixed.

Of particular interest are the symmetric periodic orbits. The numerical inte-
grations that follow showed that all the basic families of periodic orbits turned
out to be symmetric with respect to the x axis of the rotating frame. A periodic
orbit is symmetric with respect to the x axis of the rotating frame xOy if at
t = 0 the body P1, which moves always on the x axis, has zero velocity (ẋ10 = 0)
and the body P2 is on the x axis and its velocity is perpendicular to this axis
(y20 = 0, ẋ20 = 0). Consequently, a symmetric periodic orbit is determined from
three nonzero initial conditions only, namely x10, x20 and ẏ20. So, such a family
can be represented by a continuous curve in the space x1, x2, ẏ2.

2.2 Periodic Orbits of the Planetary Type

In section 2.1 we mentioned that the general planar three body problem can
be reduced to a system of three degrees of freedom, in a rotating frame xOy.
We shall now restrict ourselves to a planetary system with the sun S, and two
planets P1 and P2, with the mass m0 of the sun much larger than the masses m1
and m2 of the planets. This is a special case of the general three body problem,
but now, since the masses m1 and m2 are small, we can consider this system
as a perturbed system of the integrable system consisting of two uncoupled two
body systems, S − P1 and S − P2.

Let us assume at first that m1 = 0 and m2 = 0 and that the planets P1 and P2
move in circular orbits, with radii a1 and a2, respectively, in the same plane and
the same direction. It is clear that this motion is a symmetric periodic motion,
with respect to the x axis, in the rotating frame xOy defined above, for any value
of a1 and a2, i.e. for any value of the ratio of the periods of revolution of the two
planets around the sun S. So, we have a monoparametric family of nonresonant,
in general, periodic orbits in the unperturbed problem (zero planetary masses).

Next, we consider the case where the masses of the planets are zero and
they move around the sun in elliptic orbits, but their semimajor axes are such
that the ratio T1/T2 of their periods is a rational number. This means that
we are in a mean motion resonance. We keep now the semimajor axes of the
planets fixed and vary the eccentricities and the orientation of the two uncoupled
planetary orbits. The resulting motion is periodic (not symmetric, in general) in
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the rotating xOy frame. So, we have families of unperturbed resonant periodic
orbits in the rotating frame.

We give now to the planets nonzero masses. What happens to the above
mentioned unperturbed families? It can be proved (Hadjidemetriou 1976) that
all the members of the unperturbed family of circular orbits can be continued
to the nonzero case, as symmetric circular periodic orbits. This is true for all
orbits, except for those corresponding to the resonances of the form (n + 1)/n,
n = 1, 2, 3, ..., i.e. to the resonances 2/1, 3/2, .. At these points gaps appear
and the single unperturbed family of circular periodic orbits breaks into an
infinite number of families of symmetric nearly circular periodic orbits, which
are separated at the resonances 2/1, 3/2, ...by gaps. At these gaps, a bifurcation
of a family of resonant elliptic symmetric periodic orbits appears and the circular
family continues as a resonant elliptic family of symmetric periodic orbits, along
which the resonance remains constant, equal to the corresponding resonance at
the bifurcation point, and the eccentricities of the two planets increase, starting
from almost zero values, as we go outwards. We remark at this point that these
families of elliptic periodic orbits are the continuation (from zero to non zero
planetary masses) of the unperturbed families of elliptic periodic orbits that we
mentioned above.

So, in the space x10, x20, ẏ20 of nonzero initial conditions, the perturbed
families of symmetric periodic orbits are represented by a set of continuous
curves, having a circular, nonresonant in general, part and a resonant part, with
a fixed resonance. This is shown in Fig. 1, for the region near the 2/1 and 3/2
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Fig. 1. Families of circular and elliptic periodic orbits of the general three body prob-
lem, of the planetary type, for m1 = 0.001, m2 = 0.001 and msun = 0.998. A dis-
continuity exists at the 2/1 resonance and branches of 2/1 resonant elliptic periodic
orbits appear. Also, a stable 3/2 resonant branch of periodic orbits appears: (a) The
families in the x10, x20, ẏ20 space. (b) The families in the resonance - x0 space. One
2/1 resonant branch (marked by a thick line) is unstable. There is also a small region
on the circular branch close to the 3/1 resonance (not shown) which is also unstable.



Dynamics of Extrasolar Planetary Systems 417

resonances, for the masses m0 = 0.998, m1 = 0.001 and m2 = 0.001. Note the
gap at the 2/1 resonance.

The orbits of the two planets of a periodic system in the inertial frame
are nearly Keplerian ellipses, due to their week gravitational interaction. These
ellipses precess with a small angular velocity, which depends on the particular
periodic orbit, if the motion is ordered (see Fig. 3b, as an example), but the
precession may be chaotic in some cases.

So, summarizing all the above, we can say that there are two types of periodic
orbits of the planetary type, circular and resonant elliptic:

• Circular: The orbits of the two planets are almost circular, and
• resonant elliptic: The orbits of the two planets have finite eccentricities, but

the two semimajor axes are such that the ratio of the periods of the two
planetary orbits is rational.

The basic periodic orbits are symmetric with respect to the rotating x-axis.
This means that at t = 0 the initial conditions are x10, ẋ10 = 0, x20, y20 = 0,
ẋ20 = 0, ẏ20. In the study of the motion in the rotating frame, the angular
momentum is kept as a fixed parameter and can be used to find θ̇.

2.3 Families of Periodic Orbits at the 2/1 Resonance

We make now a complete study of the periodic orbits, close to the 2/1 resonance,
for a planetary system having the masses of the extrasolar planetary system
HD82943, namely

m1 = 0.88J, m2 sin i = 1.63J, msun = 1.05M�, (1)

(for sin(i) = 1). The mass of the sun is in solar masses and the masses of the
two planets are in Jupiter masses.

In order to avoid duplication in the numerical study, we must fix the units of
mass, length and time. In the present study this normalization is made by taking
the total mass of the system equal to one, m0 + m1 + m2 = 1, the gravitational
constant equal to one and we keep the angular momentum L fixed, equal to
L = 0.002. This means that the unit of mass is slightly larger than one solar
mass. Concerning the units of length and time, we note that they depend on the
particular value of the angular momentum L that we are using in the numerical
computations (we remind that L appears as a fixed parameter in the equations of
motion in the rotating frame). So, a particular periodic motion of the planetary
system may correspond to an infinite set of periodic planetary systems with
similar planetary orbits. There are however some elements of the orbit whose
values are independent of the units, namely the eccentricities of the planets or
the ratio of the planetary semimajor axes (or planetary periods). Several plots
that follow are in these elements of the orbit.

In normalized units, the masses of the planetary system that we will study
are

m1 = 0.0008, m2 = 0.0014, m0 = 0.9978. (2)
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Fig. 2. The families I, II, III, IV of periodic orbits for the masses of HD82943, in the
eccentricity space. The indication per, ap refers to the initial configuration at t = 0.
(per denotes position at periastron and ap position at apoastron.)

We computed four different families of symmetric periodic orbits, all at the 2/1
resonance, which differ in the initial phase of the two planets at an initial epoch
t = 0. These families are shown in Fig. 2. Along each family the angular mo-
mentum has a fixed value, L = 0.002, the same for all members of the family. To
make the presentation clearer, we present these families in the space of the initial
eccentricities of the two planets. These are in fact the osculating eccentricities
at t = 0, but we note that they do not vary much along the periodic orbit,
unless we are close to a collision orbit. At t = 0 the two planets and the sun are
in the same line, the planets being either at periastron or apoastron. This is a
consequence of the fact that the periodic orbits are symmetric with respect to
the x axis of the rotating frame. Throughout this study we will assume that the
planet P1 is the inner planet and the planet P2 is the outer planet.

In Fig. 2 we made the convention to use a positive value of the eccentricity
if the corresponding planet is at apoastron at t = 0 and a negative eccentricity
if it is at periastron. Note that due to the fact that we are in a 2/1 resonance, a
simple geometric consideration shows that the outer planet P2 after a half period
t = T/2 changes position from periastron to apoastron, or vice versa, while the
inner planet P1 returns to the same position as at t = 0.

We remark that the families designated as II and III in Fig. 2 are in fact
a single family, and the gap that appears between them is simply due to the
existence of a collision orbit between the two planets, so that the computation
presented numerical difficulties.

The whole family I is stable. Family II is mainly unstable, with the exception
of a small region which is stable. Family III is mainly stable, and there is an
unstable region close to the collision orbit. Finally, the family IV is unstable.
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In each periodic planetary system we have two nearly Keplerian planetary
orbits, which are not fixed in space, due to the gravitational interaction between
the two planets. The line of apsides of both planets rotates slowly.

3 The Different Types of 2/1 Resonant Periodic Orbits

Some typical orbits of each of the above four families are presented in the
Figs. 3–7. We find it more illustrating to present the orbits in the inertial frame,
although, as we mentioned, there is a slow precession of the line of apsides, be-
cause these orbits are periodic in a rotating frame only, in general. The orbits
thus shown are for a small time period, close to the period of the periodic orbit
in the rotating frame. In addition, we also present some periodic orbits in the
rotating frame, to obtain an idea how the motion looks in the synodic frame.

In all the periodic orbits, the line of apsides of the two planetary orbits
coincide. The pericenters of the two orbits may be in the same direction, with
respect to the sun, or in opposite directions. Concerning the phase, i.e. the
position of the two planets in their orbits at t = 0, all possible combinations can
appear. Due however to the 2/1 resonance between the two planets, if we start
with a certain phase at t = 0, after half a period, t = T/2, the position of P2
shifts from pericenter to apocenter, or vice versa. So we have, for each periodic
motion, two equivalent configurations, at t = 0 and at t = T/2, respectively.
To the above two different phases of the same orbit, we have two perpendicular
crossings of the planet P2 from the rotating x axis, and consequently we could
use either perpendicular crossing to represent a periodic orbit in Fig. 2.

Table 1. All possible phases at t = 0 and t = T/2

Type 1: Sun - P1(per) - P2(per) → P2(ap) - Sun - P1(per)
Type 2: Sun - P1(ap) - P2(ap) → P2(per) - Sun - P1(ap)
Type 3: Sun - P1(per) - P2(ap) → P2(per) - Sun - P1(per)
Type 4: Sun - P1(ap) - P2(per) → P2(ap) - Sun - P1(ap)

All the possible initial phases of a periodic orbit, and the equivalent con-
figuration at t = T/2, are summarized in Table 1. As we will see in the next
subsections, the 2/1 resonant orbits with a phase of type 1 are stable, because a
phase protection mechanism appears. These are the orbits of the family I. The
orbits of the families II and III are of the type 4. These orbits are also stable,
provided that we are not close to a collision orbit, and the eccentricities of the
two planets are large. In contrast, the orbits of the type 4 are unstable when
the eccentricities of the two planets are small, as is the case with the family II
(with some exceptions), and when we are close to a collision orbit. The resonant
orbits of the type 2 and 3 belong to the family IV and are all unstable.
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Fig. 3. (a) The orbit 1 of Fig. 2 for a short time. (b) The same orbit at two different
time intervals. The precession of the line of apsides is clear. (c) The orbit 4 of Fig. 2.
Note that both orbits 1 and 4 have large planetary eccentricities, but the system is
stable, even for the orbit 4, where the orbits of the planets intersect.

3.1 Stable Orbits of the Families I and IV

A typical orbit of the family I is shown in Fig. 3a. The exact position of this
orbit on the family I of Fig. 2 is indicated as orbit 1. The phase of this orbit is
of type 1 of the Table 1. This motion is stable, although the eccentricities are
large. The two planetary orbits do not intersect in space.

A typical orbit of the family III is shown in Fig. 3c. The exact position
of this orbit on the family III of Fig. 2 is indicated as orbit 4. This orbit is
also stable, with large values of the eccentricities, but now, in contrast to the
orbits of the family I, the planetary orbits intersect. The initial phase is of type
4 in Table 1, and due to the fact that the two planets are locked to the 2/1
resonance, a phase protection mechanism exists, which prevents the two planets
from close encounters, although their orbits intersect in space. A 2/1 resonant
stable orbit close to the system HD82943, of the type of the Fig. 3c, where the
two planetary orbits intersect, was presented last September 2002 by Ji et.al at
the IAU Colloquium 189.

3.2 A Stable and an Unstable Orbit of the Family II

We present in Fig. 4 two orbits of the family II, one stable (Fig. 4a) and one
unstable (Fig. 4b). The exact position of these orbits on the family II of Fig. 2
is indicated as orbit 2 and orbit 3, respectively. Both orbits are of type 4 of the
Table 1, as was the case with the orbit 4 of the Fig. 3b. In fact, the families II and
III belong to the same family, as already mentioned before, but they appear
as separated in Fig. 2 because there exists a collision periodic orbit between
the two planets, and the gap which appears close to this collision orbit is due
to numerical difficulties. All the orbits close to the collision orbit are strongly
unstable.

We note that the eccentricities of the two planets are rather small, but now
the orbit 3 (Fig. 4b) is unstable. The orbit 2 (Fig. 4a) has smaller eccentricities
and is stable.
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Fig. 4. (a) The orbit 2 and (b) the orbit 3 of Fig. 2. Note that in both cases the orbits
of the planets have small eccentricities and the phase is the same, but the orbit 2 is
stable while the orbit 3 is unstable.

It is interesting to compare the orbit 3 (Fig. 4) with the orbit 4 (Fig. 3). They
have the same phase, but the orbit 3 is unstable, while the orbit 4 is stable. The
instability of the orbit 3 is due to the close approach between the two planets,
as is clearly seen from the plot of Fig. 4. In the orbit 4 the closest approach
between the two planets is much larger, due to the large value of the planetary
eccentricities. Thus, the increase of the eccentricities plays a stabilizing role,
because, in relation also to a phase protection mechanism due to the fact that
the two planets are locked to the 2/1 resonance, its effect is to increase the closest
approach between the planets. This may explain why there are several actual
extrasolar planetary systems with large eccentricities.

3.3 Two Orbits of the Unstable Family IV

We present in Fig. 5 two typical periodic orbits of the family IV , indicated as
orbit 5 (Fig. 5a) and orbit 6 (Fig. 5b) of Fig. 2, at the two ends of the curve
representing this family. The orbit 5 has a phase of type 2 in Table 2, while the
orbit 6 has a phase of type 3. Note that the phase changes along the family from
type 2 to type 3. This is due to the fact that the eccentricity of the inner planet
starts with a positive value (orbit 5, position at apoastron) and as we proceed
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Fig. 5. (a) The orbit 5 and (b) the orbit 6 of Fig. 2. Note that in both cases the orbits
of the planets have large eccentricities and, contrary to the orbit 4, both systems are
unstable.
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along the family it changes to a negative value (orbit 6, position at periastron),
passing through a circular orbit, as is clearly seen in Fig. 2. Along the whole
family IV the eccentricity of the outer planet is large. The orbits of the planets
intersect in space, as in the family III (orbit 4), but now the phase is such that
the phase protection mechanism is not operating and both orbits are unstable.

3.4 The Periodic Orbits in the Synodic Frame

In Fig. 6 we present the periodic orbits 1 and 4 of the Figs. 3a and 3c, respectively,
in the rotating xOy frame, in which they are exactly periodic.

In Fig. 7 we present the periodic orbits 5 and 6 of the Figs. 5a and 5b,
respectively, in the rotating xOy frame. Note that in the rotating frame the
planet P1 moves on the x axis only and its orbit is presented as a straight line.
The length of this line depends on the eccentricity.

4 Perturbed Orbits
Close to Stable and Unstable Periodic Orbits

In the previous sections we computed four basic families of resonant periodic
orbits, at the 2/1 resonance. We shall explore now the phase space close to
these periodic orbits, in order to detect the regions where stable motion exists.
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Fig. 6. The orbit 1 of Fig. 2 and the orbit 4 of Fig. 2, in the rotating frame.
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Fig. 7. The orbit 5 of Fig. 2 and the orbit 6 of Fig. 2, in the rotating frame.
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We shall also study the generation of chaotic motion and the disruption of the
planetary system.

The dynamical system we study has three degrees of freedom, in the ro-
tating frame, so its phase space is six-dimensional. This can be reduced to a
four-dimensional phase space, if we take the Poincaré map which is on a four-
dimensional surface of section. A complete search of the whole phase space is
very tedious, even if we restrict ourselves to the vicinity of a periodic orbit (a
fixed point on the Poincaré map). In the following we study the effect of a phase
shift of the planets, in their orbits, on the stability of the system. We start with
a periodic orbit belonging to one of the four families presented in Fig. 2, and we
change the initial position of the planet P2, on its orbit. In his way we obtain a
new planetary system, which is not periodic, but the two planetary orbits have
the same elements. The study of the long term evolution of the perturbed system
is made by computing the Poincaré map. We have taken as surface of section
the surface y2 = 0 and Energy=constant. So the phase space of the mapping is
the four-dimensional space x1, ẋ1, x2, ẋ2 (the coordinates are in the rotating
frame xOy).

In the following we show, for each orbit we studied, the projection of the
mapping on one of the coordinate planes and also the time evolution of the
eccentricities and the semimajor axes.

4.1 Perturbed Orbits Close to the Orbit 1 and the Orbit 4

We start with two stable periodic orbits, orbit 1 and orbit 4, belonging to the
families I and III, respectively. Our aim is to see how the motion is affected if
the planet P2 is shifted along its orbit, thus changing the phase of the system. In
Figs. 8a and 8b we present two shifted positions of P2 along its orbit, indicated as
P21 and P22, for the periodic orbit 1 (Fig. 3a) and the periodic orbit 4 (Fig. 3b),
respectively. The results are given in Figs. 9 and 10 for the perturbed orbits to
the orbit 1 and in Figs. 11, 12 for the perturbed orbits to the orbit 4.

Note that for a small shift of P2 on its orbit, to the position P21, the perturbed
motion is on a torus, as is clearly seen from the Poincaré maps in Figs. 9a
and 10a. We remark that in these Figures we presented the projection of the
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Fig. 8. The shift of the planet P2 along its orbit, to the positions P21 and P22, on the
orbit 1 and on the orbit 4.
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(c)

Fig. 9. A perturbed orbit of the orbit 1, due to a shift of P2 along its orbit to the
position P21 of Fig. 8a: (a) Projection of the four dimensional Poincaré map in the
space x2ẋ2, (b) the evolution of the eccentricities in time, (c) the evolution of the
semimajor axes in time. The perturbed motion is on a torus.

(c)

Fig. 10. A perturbed orbit of the orbit 4, due to a shift of P2 along its orbit to the
position P21 of Fig. 8b: (a) Projection of the four dimensional Poincaré map in the
space x1x2, (b) the evolution of the eccentricities in time, (c) the evolution of the
semimajor axes in time. The perturbed motion is on a torus.

four dimensional Poincaré map on a two dimensional coordinate plane. The
projection of the Poinaré map in all the other coordinate planes (not shown here)
is similar. So, indeed the perturbed motion on the surface of section is on a four
dimensional torus. The evolution of the semimajor axes and the eccentricities of
both planets undergo oscillations with a fixed amplitude. This is an indication
that in both cases the motion is ordered and the two planets move on bounded
orbits. This means that a small change of the phase of a stable periodic orbit
results to ordered, bounded, motion on a torus in the four dimensional phase
space.

If the shift of P2 along its orbit is larger, to the position P22, resulting to
a larger change of the phase of the system, the stable periodic orbits 1 and
4 become now unstable and the system quickly disrupts into a close binary,
consisting of the sun and one planet, while the other planet escapes to infinity.
This is clearly seen in Figs. 11 and 12, for the orbits 1 and 4, respectively.

From the above we see that a small shift of the phase close to a periodic
motion results to ordered motion on a torus, while a larger shift of the phase
results to instability and escape of one planet. The distinction between ordered
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Fig. 11. A perturbed orbit of the orbit 1, due to a shift of P2 along its orbit to the
position P22 of Fig. 8a: (a) Projection of the four dimensional Poincaré map in the
space x1ẋ1, (b) the evolution of the eccentricities in time, (c) the evolution of the
semimajor axes in time. The perturbed motion starts on a perturbed torus, but soon
the planet P1 escapes.
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Fig. 12. A perturbed orbit of the orbit 4, due to a shift of P2 along its orbit to the
position P22 of Fig. 8b: (a) Projection of the four dimensional Poincaré map in the
space x1x2, (b) the evolution of the eccentricities in time, (c) the evolution of the
semimajor axes in time. The perturbed motion starts on a perturbed torus, but soon
the planet P1 escapes.

and chaotic motion was based on the geometric properties of the Poincaré map,
as obtained from the numerical computations. A more rigorous analysis, based
on spectral analysis of the time series of several elements of the orbit (eccen-
tricity, semi major axis) verified the distinction between order and chaos, as
obtained from the graphs. An typical example of ordered and of chaotic motion
is presented in the next section.

4.2 Perturbed Orbits Close to the Orbit 2 and the Orbit 3

As in the previous subsection, we study the effect of a phase shift of the planet
P2 on its orbit. We consider two orbits of the family II, orbit 2 and orbit 3.
The first is stable and the second is unstable. The shifted positions are shown in
Fig. 13. The results of the numerical computations are shown in Figs. 14 and 15
for the orbit 2 and in Figs. 15–18 for the orbit 3.

The numerical results show that a shift of P2 along the stable periodic orbit
2 results to ordered, bounded, motion on a torus, even for a large change of
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Fig. 13. The shift of the planet P2 along its orbit, to the positions P21 and P22 on the
orbit 2 and on the orbit 3.

(c)

Fig. 14. A perturbed orbit of the orbit 2, due to a shift of P2 along its orbit to the
position P21 of Fig. 13a: (a) Projection of the four dimensional Poincaré map in the
space x2ẋ2, (b) the evolution of the eccentricities in time, (c) the evolution of the
semimajor axes in time. The perturbed motion is on a torus.

orbit 2 (P22)
Poincare map

(c)

Fig. 15. A perturbed orbit of the orbit 2, due to a shift of P2 along its orbit to the
position P22 of Fig. 13a: (a) Projection of the four dimensional Poincaré map in the
space x2ẋ2, (b) the evolution of the eccentricities in time, (c) the evolution of the
semimajor axes in time. The perturbed motion is on a torus.

the phase (positions P21 and P22 of Fig. 13a), as shown clearly in the Figs. 14
and 15. (We also mention here that the projection of the Poincaré map to all
other coordinate planes was similar to that shown in Figs. 15 and 15).

In contrast, a shift of P2 along the unstable periodic orbit 3 (Fig. 13b) results
to chaotic motion, although no escape was detected. Note that when the phase
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Fig. 16. A perturbed orbit of the orbit 3, due to a shift of P2 along its orbit to the
position P21 of Fig. 13b: Projection of the four dimensional Poincaré map in the space
x2ẋ2 (a) for the first 3000 iterations, and (b) for long time. The motion starts on a
torus, but later it becomes chaotic.
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Fig. 17. A perturbed orbit of the orbit 3, due to a shift of P2 along its orbit to the
position P21 of Fig. 13b: (a) Poincaré map for the evolution of the eccentricities in time
and (b) the evolution of the semimajor axes in time.

(c)

Fig. 18. A perturbed orbit of the orbit 3, due to a shift of P2 along its orbit to the
position P22 of Fig. 13b: (a) Projection of the four dimensional Poincaré map in the
space x1x2, (b) the evolution of the eccentricities in time, (c) the evolution of the
semimajor axes in time. The perturbed motion is chaotic.

shift is small (position P21), the perturbed motion starts on a distorted torus
(Fig. 16a), but later on the motion becomes chaotic (Figs. 16b, 17). Note that
both the eccentricities and the semimajor axes are bounded in an oscillatory mo-
tion for a long time initially, corresponding to the motion on the distorted torus
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in Fig. 16a, but after a certain time chaotic motion starts. This phenomenon is
in fact a manifestation of the stickiness effect, studied in Efthimiopoulos et. al.
(1997) for two degrees of freedom.

For a larger phase shift of P2, to the position P22 in Fig. 13b, the perturbed
motion is chaotic from the start (Fig. 18).

4.3 Perturbed Orbits Close to the Orbit 5

In Fig. 19 we show the shift of the planet P2 to the positions P21 and P22, along
the unstable periodic orbit 5 of the family IV . The resulting motion is unstable
for all positions of P2. An example is given in Fig. 20, for a shift to the position
P21, where, after a strong chaotic motion of the system, the planet P1 escapes.
The same evolution appears for the shift to the position P22.

5 Discussion

We have presented a systematic way to find all the regions of the phase space
of a planetary system with two planets, moving in the same plane, where stable
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Fig. 19. The shift of the planet P2 along its orbit, to the positions P21 and P22, on
the orbit 5.
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Fig. 20. A perturbed orbit of the orbit 5, due to a shift of P2 along its orbit to the
position P21 of Fig. 19: (a) Projection of the four dimensional Poincaré map in the
space x1x2, (b) the evolution of the eccentricities in time, (c) the evolution of the
semimajor axes in time. The planet P1 escapes. In (b) and (c) the last points, leading
to escape, are not shown.
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motion could appear. This was achieved by studying the families of periodic
orbits and their stability properties. The study was restricted to the region close
to the 2/1 mean motion resonance between the planetary orbits, but a similar
study can be carried out for all other important resonances. Each resonance
however has its own characteristics, and the behaviour is different from one type
of resonance to the other. The present study is restricted to planetary systems
having the same masses as the observed planetary system HD82943. But we
note at this point that a change of the planetary masses, for example keeping
the total mass fixed and varying the ratio m1/m2, may result to a change of the
stability (Hadjidemetriou, 2002).

The phase of the planets plays a crucial role on the stability of the system.
This is so because, for some phases a phase protection mechanism is operating,
protecting the two planets from close encounters. It was found that the system is
stable, even for large eccentricities, provided that both planets start from their
perihelia, situated in the same direction (type 1 of Table 1). In this case the
orbits of the planets do not intersect. This is the phase of all the orbits of the
family I. Another stable phase, where the planetary orbits do intersect in space,
is when the inner planet starts at aphelion and the outer planet at perihelion,
both situated in the same direction (type 4 of Table 1). It is interesting to note
that for this phase, the increase of the eccentricities plays a stabilizing role. This
is clear in Fig. 2, where the families II and III have the same phase (type 4),
but almost all orbits of the family II, corresponding to small eccentricities, are
unstable, while all orbits of the family III (with the exception of those close to
the collision orbit) are stable. A typical unstable orbit is shown in Fig. 4b and
a typical stable orbit is shown in Fig. 3a (both for the same phase of type 4).

Contrary to these stable phases, there are two more phases that are in all
cases unstable (type 2 and type 3 of Table 1). These are the phases of the orbits
of the family IV . We did not find any stable periodic motion corresponding to
these phases. For the orbits of the family IV we found that a small deviation
from the exact periodic motion results to a distorted motion and sooner or later
a close encounter between the two planets appears, resulting to chaotic motion
and in some cases disruption of the system (Fig. 20).

For the stable orbits, we studied the long term behaviour of the perturbed
motion, obtained by shifting the planet P2 along its orbit, thus changing the
initial phase, but leaving all planetary elements unchanged. We found that for
a small shift stable, quasi periodic, motion appears as is clear from the corre-
sponding Poincaré maps that we have computed. Thus we found that there do
exist zones of stability, where stable planetary systems could appear in nature.
Some typical examples are in Figs. 9a, 10a, 14a and 15a. From the above it is
clear that planetary systems with large eccentricities could be common on the
sky. However, such systems with large eccentricities should necessarily be close
to a resonance, with the proper phase, because it is the resonance that gener-
ates the phase protection mechanism which stabilizes the system. Far from the
resonance close encounters are inevitable, resulting to chaotic motion.
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(c)

Fig. 21. The long run of a planetary orbit with the elements of HD82943 (Projection
of the four dimensional Poincaré map in the space x1x2): (a) for the configuration Sun-
P1(perihelion)-P2(perihelion), (b) for the configuration P1(aphelion)-Sun-P2(aphelion)
and (c) for the configuration Sun-P1(aphelion)-P2(aphelion). The repeated close en-
counters in (c) are clearly seen, close to the line x2 = x1 (note that y1 = 0, y2 = 0).

The observed planetary system HD82943 is close to the stable configurations
we found in our study, as shown in Fig. 2. In Fig. 21 we present the Poincaré map
using the orbital elements of the system HD82943. Since the phase is not known,
we used three different phases, one of the stable type 1 of Table 1, corresponding
to the family I (Fig. 21a), one of the stable type 4, corresponding to the family
III (Fig. 21b) and one of the unstable type 2, corresponding to the family IV
(Fig. 21c). We note that in the two stable phases the system is bounded, moving
on a torus, while the motion for the unstable phase is chaotic, resulting to large
variations of the planetary orbits and eventually to escape of one planet. Note
that in this latter case close encounters between the two planets appear, as
indicated in Fig. 21c, resulting to strong chaotic motion and large changes of the
orbital elements.

The ordered or the chaotic nature of the motion in Fig. 21, as is clearly seen
on the projections of the Poincaré map, is verified by a power spectrum analysis
of the time series of the elements of the orbit, along the perturbed motion. In
Fig. 22 we present two typical power spectra, one for the ordered motion of the
Fig. 21b and one for the chaotic motion of the Fig. 21c, for the time series for the
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Fig. 22. Power spectra of the time series of the evolution of the semimajor axis: (a)
for the ordered orbit of the Fig. 21b and (b) for the chaotic orbit of the Fig. 21c.
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semimajor axis a1. The distinction between order and chaos is clear. In Fig. 22a
the power spectrum density has the typical features of ordered motion, (a few
peaks of significant amplitude). On the other hand, the power spectrum density
in Fig. 22b is typical of a chaotic motion, because it shows 1/f -divergence, which
indicates strong chaos.

A similar power spectrum density analysis was made for all the orbits that
we studied in the previous sections and the geometric picture of order or chaos
that we observed on the Poincaré map was confirmed.
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Abstract. In 1964 M. Hénon and, independently, V. Szebehely with G. Bozis pre-
sented the first numerical results, indicating the existence of a “new” local integral of
motion in the circular restricted three-body problem. The first terms of an asymptotic
expansion of this integral were later calculated by Contopoulos [1]. Several years later,
the Celestial Mechanics astronomical community started to develop a very successful
theory on local integrals of motion in the restricted three-body problem, which however
in the jargon of this field are called proper elements and are related to known analytical
approximate solutions. The calculation of proper elements is based on the implicit as-
sumption that the orbit traced by a planet (major or minor) is nearly-regular. Here we
show that this method is also applicable, albeit partly, in a special case of chaotic mo-
tion in the Solar System, known as “stable chaos”. Thus, the existence of an additional
local integral of motion in the elliptic restricted three-body problem is responsible for
the phenomenon of stable chaos.

1 Introduction

In 1964 the Laboratory of Astronomy of the University of Thessaloniki hosted
IAU Symposium 25. This meeting was devoted to the interaction between as-
tronomers working on two widely different fields of Dynamical Astronomy, namely
Galactic Dynamics and Celestial Mechanics, in the hope that the methods used
traditionally in one of the fields could prove useful in the other. Indeed, several
papers presented in this meeting followed the above line. In two of them Hénon
[2], on the one hand and, independently, Szebehely and Bozis [3] on the other,
reported that they had found indications for the existence of a further integral
of motion in the planar circular restricted three-body problem (a two-degrees of
freedom dynamical system), besides the well known Jacobi integral.

Subsequently Contopoulos [1] showed how this integral could be constructed
in a series form through an algorithm similar to the one he had proposed already
[4] for the “third” integral in the case of a galactic type potential, in which (se-
ries) the zeroth order term is the angular momentum. At the same time Bozis
[5] [6] studied extensively the properties of this new integral, as well as the com-
putation, through its use, of “generalized” elements of motion (e.g. eccentricity,
see next paragraphs).

Since Poincaré had shown that the three-body problem is non-integrable, it
is obvious that this integral can only be a “local” (non-isolating) one. Therefore
one should inquire in which regions of phase space this integral may be applied,
as it was initiated by Bozis [6]. These regions should be called “regular”, since the

G. Contopoulos and N. Voglis (Eds.): LNP 626, pp. 433–441, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



434 Harry Varvoglis, Kleomenis Tsiganis, and John D. Hadjidemetriou

corresponding dynamical system has two degrees of freedom and, therefore, in
the regions where there exist two integrals of motion, it behaves like an integrable
one.

A three-dimensional elliptic orbit of the two-body problem is uniquely defined
by three quantities, the three elements of the orbit a, e and I, where I is the
inclination of the plane of the orbit with respect to a “reference” plane, a is the
semi-major axis of the ellipse and e the eccentricity. In what follows we consider
the motion of massless test-particles (i.e. asteroids) relative to a massive central
body (i.e. the Sun) of mass M . The orbital elements of the minor planet are
related to the energy, E and the angular momentum, h, of its orbit, through the
relations

a = −G M

2E
(1)

e =

√
1 +

2Eh2

G2M2 (2)

For elliptic motion, the orbital energy, E, has to be negative.
It is worth to note that the two-body problem is an intrinsically degenerate

dynamical system [9], a property that becomes obvious if we write the corre-
sponding Hamiltonian in action-angle variables. One possible set of action angle
variables in this case are the well known modified Delaunay variables, defined
through the relations

Λ =
√

G M a λ = � + l (3)

Γ = Λ(1 −
√

1 − e2) γ = −� (4)
Z = Γ (1 − cos i) ζ = −Ω (5)

where the angles Ω, � and l are the three Euler angles: the first two define
the orientation of the ellipse in space and the third one the position of the the
asteroid on the ellipse. In Celestial Mechanics the various angles have their own
names: Ω is the longitude of the ascending node of the orbit, � = Ω + ω is
the longitude of the pericenter and λ = � + l is the mean longitude. The mean
anomaly, l, is related to time through the relation l = n t, where n is the mean
motion of the planet, i.e. its mean angular frequency around the massive central
body. The Hamiltonian of the two-body problem, written in the above variables,
becomes simply

H = −G2 M2

2 Λ2 (6)

i.e. it depends only on the action corresponding to the energy, which, according
to (1), depends only on the semi-major axis.

The two-body problem is only a simple approximation of a planet’s motion
around the Sun. A better approximation is the restricted three-body problem. In
this model a massless particle is moving in the gravitational field of two bodies,
a central massive primary of mass M (the Sun) and a perturbing planet of mass
m (say Jupiter). Moreover, the motion of the perturbing planet around the Sun
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is a Keplerian closed orbit (i.e. either a circle or an ellipse). The trajectory of
the massless body is not anymore an ellipse, due to the perturbations induced
by the planet. However, due to the small mass of the perturber relative to the
Sun and for relatively large separation between the asteroid and the perturber,
the trajectory can be described by means of the osculating elements, i.e. instan-
taneous values of the variables a(t), e(t) and I(t), defined as the elements of
an ellipse that is tangent to the real orbit at time t. The process is very easily
implemented, since it reduces to the calculation of the elements of the orbit from
the instantaneous values of the energy and the angular momentum (which, of
course, are not anymore constants in the case of the three-body problem).

2 The Way Things Might Have Happened

2.1 Ordered Trajectories

From the form of the Hamiltonian alone and some educated guesses, one could
relatively easily arrive at the form of the third integral, for the existence of
which Hénon, Szebehely and Bozis had found numerical evidence, as follows.
In the restricted three-body problem the Hamiltonian can be “split” into two
parts, one of order zero with respect to the mass ratio, µ = m

M+m , and one of
order unity. In modified Delaunay variables the zeroth-order term depends only
on Λ, while the other two actions appear only in the first order term, which
therefore may be considered as a “perturbation”. Thus, we have again a case of
degeneracy, similar to the one appearing in the two-body problem. Due to this
degeneracy, the Fourier expansion of the perturbation contains terms that do not
depend on the angle λ. Therefore, if one ignores the terms involving λ and λ′
1, which become important only when they are almost resonant, the osculating
semi-major axis, a, is constant, a famous result known as the Laplace-Lagrange
linear theory of secular motion. Then E is constant to a linear approximation
as well, since it depends only on the osculating semi-major axis through (1).
As a consequence and, in view of (2), the osculating eccentricity, e, is, to a
linear approximation, a function of h only, i.e. e depends, essentially, only on the
angular momentum. Therefore it is natural to expect that, if one would attempt
to calculate a “third” integral for the full, non-linearized problem as a series,
using as a small parameter the mass ratio, µ, the zero-order term should be the
angular momentum of the massless body on its (unperturbed) orbit around the
central body. This is exactly the method used by Contopoulos [1]. In the same
linear approximation as for a, the osculating eccentricity of the asteroid is given
by

e2 = e2
f + e2

P + 2 ef eP cos(gP t + βP ), (7)

where ef , eP , gP and βP (the phase at t = 0) are constants. In particular
ef (usually called forced eccentricity) and gP (proper frequency) depend only
on a and µ, while eP is the constant amplitude of variation of the osculating
1 Note that by a prime we denote the angles of the perturbing planet
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eccentricity. In the full, non-linearized problem, eP can be calculated through
an algorithm similar to the one used by Contopoulos [1], and is called the proper
eccentricity.

Since the circular restricted three-body problem is a two-degrees of free-
dom autonomous dynamical system, the existence of a second integral of motion
would imply integrability. In this case all trajectories would be ordered and the
secular solution would always remain O(µ) close to the real solution. Note that
(7) is the simplest secular theory of Celestial Mechanics (e.g. see Yuasa [7] or Mi-
lani and Knežević [8]). This result can be generalized for forms of the restricted
three-body problem with more than two degrees of freedom, such as the elliptic
(where the orbit of the perturber is an ellipse) or the three-dimensional (where
the massless body moves outside the plane of the orbit of the perturber). In
these cases one would need to calculate further integrals of motion, in the same
spirit. As far as the total number of integrals is equal to the number of degrees of
freedom of the corresponding (autonomous) dynamical system, all trajectories
would be ordered. In this way we see that the three proper elements of the tra-
jectory (or the associated modified Delaunay variables) constitute a set of action
variables (and hence integrals of motion) of the secular three-body problem.

2.2 Chaotic Trajectories

The proper elements of ordered trajectories of asteroids are calculated through
the secular theory at any desirable level of accuracy. However we know, from the
work of Poincaré, that the restricted three-body problem does not admit any
further integrals of motion, analytic in any variables. Therefore the corresponding
dynamical system is non-integrable and the integrals in series form calculated
through the method of Contopoulos (or some secular theory) can only be non-
isolating, local ones. Hence in the vicinity of orbital resonances between the
test-particle and the perturber (i.e. resonances between the angles λ and λ′)
the secular theory should fail, as a result of the small divisors problem and
the appearance of chaotic motion. This means that all specific models of the
restricted three-body problem (e.g. circular, elliptic or three-dimensional) should
possess chaotic phase-space regions, besides the ordered ones. What can we say
on the properties of chaotic trajectories? This problem was attacked by many
authors through extensive numerical calculations, according to the available, at
any period, computing power. The first model studied was the simplest one,
namely the planar circular restricted three-body problem.

Soon it was realized, however, that this model does not represent the generic
case, since it corresponds to an autonomous dynamical system with two degrees
of freedom. But in this class of dynamical systems Arnold’s diffusion (see e.g. [9]),
which might play an important role in solar system dynamics, cannot be taken
into account. Therefore, if we would like to consider a “generic” model for three-
body dynamics, we should have at least three degrees of freedom! Consequently
one should use as a “generic model” either the elliptic planar restricted or the
circular three-dimensional restricted problem and not the planar circular. This
was done by Contopoulos, who calculated the form of the “third” integral in the
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case of the three-dimensional restricted three-body problem [10] and the planar
elliptical three-body problem [11].

The difference between the circular restricted three-body problem, on one
hand, and the three-dimensional or elliptic restricted problem, on the other,
is qualitative2. In both cases there exists a global (isolating) integral, which
is the Jacobi integral in the first and the Hamiltonian of the extended phase-
space in the second. But in the first case the situation is clear-cut: a specific
trajectory is either ordered (if an additional local integral exists) or chaotic (if
no local integrals exist). In the second case, however, there may exist from none
to two local integrals of motion [12]. Two local integrals imply regular behavior
and ordered trajectories, for which the secular solution would be an accurate
approximation. The other two sub-cases correspond to chaotic motion, but with
significant differences. If no local integrals exist, the chaotic trajectory covers
densely a sub-manifold of the phase-space, defined by the constant “energy”
surface. If one local integral exists, then the trajectory lies on a manifold which
is the cartesian product of a two-dimensional torus with an annulus [18] (see
Fig. 1). The motion on the two-torus corresponds to the ordered part of the
trajectory, originating from the existence of the two integrals, while the motion
on the annulus corresponds to the chaotic part.

In the case where no local integrals exist, the motion is “fully” chaotic, i.e.
macroscopically it is equivalent to a random walk. Therefore, one might use
methods of statistical mechanics (e.g. a Fokker-Planck-type equation) in order
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Fig. 1. Calculation of the number of integrals of three trajectories, one ordered and
two stable chaotic, in the region of the 12:7 orbital resonance (from [15]). According to
the theory, if we partition a 3-D space in M3 bins of side l, N of which are occupied by
a trajectory, then we have that log N(l) ∼ d 3 log M(l), where d 3 = 3−d, and d is the
number of integrals. The regular orbit yields d 3 = 0, i.e. d = 3, while stable-chaotic
orbits have d 3 ≈ 1, i.e. d ≈ 2

2 The 2-D elliptic and the 3-D circular problem are also by no means equivalent to
each other.
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to describe the evolution of a set of initial conditions as a diffusion process in the
elements space. Since, according to what has been already said, the semi-major
axis is constant to a linear approximation, we can select as a dependent variable
either the eccentricity or the inclination. The eccentricity is our first choice, since
it is intimately related to the escape of asteroids from the main belt.

It is easy to see that e increases on the average, since if we consider the
chaotic motion as a random walk in eccentricity space, there is a reflecting wall
at e = 0! Moreover, as e increases the resonances begin to overlap and chaotic
motion becomes dominant. Therefore asteroids in fully chaotic trajectories follow
more and more elongated orbits, until they hit a planet and are removed from
the distribution. An analytic theory for the diffusion of asteroids was developed
by Murray and Holman [13] and was recently applied, with considerable success,
for the estimation of the age of the Veritas family of asteroids [14].

In the case where one local integral exists, the motion is “partially” chaotic,
which means that some degrees of freedom are evidently chaotic and some ap-
pear as being ordered. From extensive numerical experiments it is relatively
straightforward to show that the evolution of a is chaotic, while e and I change
almost quasi-periodically with time, their proper values being almost constant
[16] [17] [18] (Fig. 2). But, according to the secular theory, a only undergoes
bounded erratic oscillations and does not change secularly, unless of course the
trajectory escapes from the (non-isolated) region of the elements’ space, where
it is restricted by the level surfaces of the local integral. Since the usual way
for the classification of trajectories is through the calculation of the Maximal
Lyapunov Number, which in this case is positive, “partially chaotic” trajectories
could be named, as well, “stable chaotic”. Since for a stable chaotic trajectory
eP does not increase on the average, there are no collisions with other planets
and, therefore, no escapes.

Extensive numerical work has shown that another important property of a
phase-space region, besides the existence of local integrals of motion, is the exis-
tence or not of simple-periodic resonant trajectories. Although in the restricted
circular three-body problem all orbital resonances with Jupiter correspond to
periodic trajectories, this is not true for the elliptic problem. In general, or-
bital resonances do not correspond to periodic trajectories, unless their period
is an exact multiple of Jupiter’s revolution period [16]. Thus, the chaotic re-
gions of phase space (i.e. the resonances’ zones), in the planar elliptic (or the
three-dimensional circular) restricted three-body problem, can be classified into
three classes as follows, according to the type of trajectories they contain and
the existence or not of periodic trajectories [16] [17] [18].

Stable chaotic regions constitute the first class. In such a region the evolution
of trajectories is not diffusive. Chaotic trajectories are semi-confined by the level
surfaces of the local integrals. Since, however, these surfaces are non-isolating,
the trajectory eventually escapes from such a region through the “holes” of the
“invariant” manifold. After such an escape, the eccentricity increases steeply.
Numerical experiments have shown that the typical time-scale, T , for escape
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Fig. 2. The elements a (top), h = e sin � (middle) and p = I sin Ω (bottom) are given,
as functions of time, for one regular and one stable-chaotic orbit of the elliptic three-
body problem in the vicinity of the 12:7 orbital resonance (from [15]). The unit of time
is the revolution period of Jupiter, TJ ≈ 11.86 yr. It is easy to realize the different
character of the motion between these two orbits, by monitoring the behavior of a.
On the other hand, one cannot decide whether an orbit is regular or chaotic by just
observing the graphs of h or p

through this process is T ∼ 1 Gyr and can even exceed the age of the solar
system (5 Gyrs), depending on the specific resonance.

Fully chaotic regions are divided into two classes, according to whether they
support simple periodic orbits or not. If there are no periodic orbits, the evolution
is diffusive, i.e. a trajectory undergoes many small “jumps” in eccentricity. This
case is the one that can be described successfully through a diffusion equation
and its typical time-scale, as can be calculated by the values of the diffusion
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coefficient, is of the order of 100 Myrs < T < 1,000 Myrs (again, depending on
the specific orbital resonance).

If there exist periodic orbits, then the evolution of chaotic trajectories is
“fast” and intermittent, as the trajectory from time to time follows the un-
stable periodic orbit. This is the kind of motion found by Wisdom [19] and
Hadjidemetriou [20]. The typical time-scale for the “jumps” is of the order of
5 · 105 yrs, while the escape time is of order 105 < T < 106 yrs. There are only 5
such resonances in the phase-space region that corresponds to the main asteroid
belt, in both the elliptic and the three-dimensional restricted three-body prob-
lems. These are the 2:1, 3:1, 4:1, 5:2 and 7:3 orbital resonances with Jupiter.
Since the more well-known Kirkwood gaps lie exactly at these resonances, one
arrives easily at the conclusion that the existence of a periodic trajectory is the
common factor that differentiates between orbital resonances, associated with a
Kirkwood gap, and those that are not.

Summarizing, we can say that stable chaos is the observational manifestation
of the existence of a local integral of motion, while the Kirkwood gaps appear
at resonances where periodic orbits exist, in the elliptic or the three-dimensional
restricted three-body problem.

3 The Way Things Really Happened

Unfortunately, the evolution of ideas in science does not always follow the “ob-
vious” path. The applicability of local integrals of motion presents another case
of misunderstanding between theorists and applied-oriented astronomers. The
scientific community of Celestial Mechanics did not capitalize on the work of
Bozis and Contopoulos, related to the existence of local integrals of motion and
the calculation of “primitive proper elements”. Instead, for quite some time, the
calculation of proper elements was only used for objects that move far away from
the main resonances, where secular theory could apply.

Things started to change in the 1980’s, when algorithms for the calculation of
the maximal LCN were made available and Wisdom [19] found the “intermittent”
behavior of the osculating eccentricity in the vicinity of the 3:1 resonance, which
is characteristic of the existence of an unstable periodic trajectory. However, since
as a rule only the maximal LCN was calculated, there was no way to differentiate
between regions where none or one local integral exists. That is why the chaotic
motion in the regions where local integrals exists was considered “peculiar” and
termed stable chaos.

The first to point out that stable chaotic motion is not “fully chaotic” were
Varvoglis and Anastasiadis [21]. This idea was subsequently elaborated in a se-
ries of papers by Tsiganis, Varvoglis and Hadjidemetriou [16] [17] [18]. In these
papers it is shown, through the computation of autocorrelation functions, that
stable-chaotic trajectories have almost constant proper elements, i.e. they possess
local integrals of motion (see Fig. 1), and lie at the border between fully chaotic
and regular phase-space regions. Consequently, stable-chaotic orbits represent
cases of sticky motion in G and H (i.e. essentially eccentricity and inclination)
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and chaotic motion in L (i.e. semi-major axis), a type of motion for which no ana-
logue exists in two-dimensional dynamical systems. The subsequent numerical
calculation of the number of integrals, preserved by a large number of trajecto-
ries of the elliptic restricted three-body problem [15], confirmed this picture. In
this way today we arrived finally, after thirty-six years, in the “re-discovery” of
the work of Contopoulos-Bozis and its connection to proper elements, by under-
standing the phenomenon of stable chaos and its relation to local integrals of
motion.
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